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CONSTRUCTING MEANINGS AND UTILITIES WITHIN 
ALGEBRAIC TASKS 

Janet Ainley, Liz Bills, Kirsty Wilson 
Institute of Education, University of Warwick, UK 

The Purposeful Algebraic Activity project aims to explore the potential of 
spreadsheets in the introduction to algebra and algebraic thinking. We discuss two 
sub-themes within the project: tracing the development of pupils’ construction of 
meaning for variable from arithmetic-based activity, through use of spreadsheets, 
and into formal algebra, and tracing the ways in which children construct utilities for 
algebraic activity. Our analysis of pupils’ activity suggests that tasks which offer 
opportunities to construct different utilities may also be associated with the 
construction of different meanings for variable. 

INTRODUCTION
The Purposeful Algebraic Activity project1 aims to explore the potential of 
spreadsheets in the introduction to algebra and algebraic thinking, making links to 
both the learning and teaching of arithmetic and the development of traditional school 
algebra. In this paper, we discuss two sub-themes within the project: tracing the 
development of pupils’ construction of meaning for variable from arithmetic-based 
activity, through use of spreadsheets, and into formal algebra, and tracing the ways in 
which children construct utilities for algebraic activity: that is, an understanding of 
why and how this is useful (Ainley and Pratt, 2002). We focus on the key algebraic 
idea of generational activity (Kieran, 1996): expressing relationships in a general 
way through the use of a variable.
Through the focused use of the spreadsheet environment, and carefully designed 
pedagogic tasks which are purposeful for pupils, the project aims to create 
opportunities for pupils to not only develop the technical skills of working with 
formal notation to express relationships, and conceptual understanding of this 
activity, but also to construct utilities for algebraic activity. We identify two potential 
utilities: generating many examples (so that patterns can be seen more clearly), and 
showing structure. Our analysis of pupils’ activity suggests that tasks which offer 
opportunities to construct these different utilities may also be associated with the 
construction of different meanings for formal notation and variable. 

MEANINGS FOR VARIABLE IN THE SPREADSHEET ENVIRONMENT 
The different meanings for variable which may be constructed by learners in the early 
stages of algebra have been explored and reported by many researchers. Limited 
                                          
1 Funded by the Economic and Social Research Council 



www.manaraa.com

2–2  PME28 – 2004

space does not allow a lengthy discussion but we draw on Ursini and Trigueros’ 
(2001) recent categorization as a way of articulating one distinction which has 
become apparent within our analysis.  
In the algebra-like notation of the spreadsheet, the cell reference is used ambiguously 
to name both the physical location of a cell in a column and row, and the information 
that the cell may contain. The spreadsheet thus offers a strong visual image of the cell 
as a container into which numbers can be placed. The meaning for variable which 
this image seems likely to support is that of a placeholder for general number (Ursini 
and Trigueros, 2001), implying that pupils are able to: 

interpret a symbol as representing a general, indeterminate entity that can assume any 
value, and symbolise general statements, rules or methods (p. 336) 

However, the image offered by the spreadsheet is ambiguous in another powerful 
way: when a formula is entered in a cell, it can be ‘filled down’ to operate on a range 
of cells in a column. The cell reference can then be seen as both specific (a particular 
number I may put in this cell) and general (all the values I may enter in this column). 
This image is likely to support the idea of variable as a range of numbers in
functional relationships. Ursini and Trigueros (2001) associate this with (amongst 
others) the abilities to: 

determine the values of the dependent variable given the value of the independent one, 
and symbolise a functional relationship based on the analysis of the data of a problem. (p. 
336-7) 

Other features of the spreadsheet environment may offer opportunities for pupils to 
appreciate utilities of algebraic activity. The first is that its notation provides a 
‘language’ which can mediate between pupils’ natural language and formal algebraic 
notation (Sutherland, 1993). Meanings for ‘spreadsheet language’ develop during 
algebraic activity, alongside the use of natural language, to express ideas and 
relationships. The meaningful use of spreadsheet language may demonstrate the 
power of algebraic activity to allow the structure of a relationship to be easily seen. A 
second feature is that the use of spreadsheet notation has an immediate purpose in 
producing a result from which pupils can get meaningful feedback, such as a table of 
data which can be graphed. Pupils are thus able to appreciate the usefulness of 
algebraic activity to generate examples from which patterns can be seen.  
These two features contrast sharply with more traditional approaches, where pupils 
may be required to translate their ideas into formal notation as the last stage of an 
activity. Here the purpose of expressing relationships in a formal notation may be 
unclear, and the only feedback accessible to the pupil may be the teacher’s approval.

THE TEACHING PROGRAMME 
Within the Purposeful Algebraic Activity Project we have developed a teaching 
programme of six tasks (used as three pairs) which incorporate different uses of the 
spreadsheet, and different algebraic ideas, within settings designed to have clear 
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purposes for pupils. The tasks have been developed by the project team, in 
collaboration with a group of primary and secondary teachers. The primary teachers 
trialled initial versions of the tasks with their pupils (aged 10-11 years), and this 
experience was fed into the development of a more polished set of materials to be 
used by the secondary teachers. These were used as part of the normal curriculum 
with five classes in the first year of secondary schooling (aged 11-12 years, covering 
a range of attainment, in two schools). 
The data presented in this paper is taken from work on two tasks: Hundred Square 
(task 2 in the programme) and Mobile Phones (task 4).

DATA COLLECTION 
The secondary classes in schools worked on each task for 2-3 lessons. Unfortunately, 
the time available for these lessons was limited by timetabling and curriculum 
constraints, and many classes did not have enough time to complete the tasks as they 
were originally designed. All lessons were observed by a researcher, and four sources 
of data were collected: 

 researcher’s field notes, which included observations of pupils’ working 
 audio-recordings from a radio microphone worn by the teacher 
 video and screen recordings from a targeted pair of pupils in each lesson 
 examples of pupils’ written work and spreadsheet files. 

The audio and video recordings were transcribed. The transcripts of the pairs of 
children were annotated with observations from the video and screen recordings, and 
examples of the pupils’ files saved during the lessons. All sources of data were then 
coded to identify examples of different kinds of generational, transformational and 
meta-level activity (Kieran, 1996), including different meanings for variable, and use 
of natural language, spreadsheet and formal notation to generate expressions. 
Codings were cross-checked amongst the project team, and sub-themes emerged and 
developed during the coding process.

ACTIVITY IN THE HUNDRED SQUARE TASK 
Hundred Square involves exploring patterns with a 100 square (created on the 
spreadsheet) by taking 3x3 cross-shapes from within the square, and comparing the 
sums of values on the two arms of the cross (see example in Fig. 1). To make the 
exploration easier, pupils are asked to set up a ‘testing cross’ on their spreadsheet, 
and use formulae to create the complete cross once the middle number is entered. 
They are asked to explain the patterns that they find in their results, and then set a 
final challenge: to design some new shapes on the Hundred Square with interesting 
patterns.
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In Judith’s class, most pupils managed to find some patterns in their 
results when adding the numbers on the horizontal and vertical arms of 
the cross, noticing that each gave the same total, and that this total was 
three times the number at the center of the cross. However, Louise was 
the only pupil prepared to try to explain this in the discussion at the start 
of the second lesson. 

Louise said that 16+10=26 and 16-10=6, explaining why the column total was three 
times the middle number. (Field notes)

With her partner Harriet, Louise was then comfortable with writing formulae to 
express this relationship on the spreadsheet, using =B14-10 and =B14+10 as the 
formulae above and below the middle cell (B14) in their ‘testing cross’. Later they 
went on to make a new shape, a cross covering five rows and columns. They 
confidently used the cell reference of the center cell as the starting point for their 
formulae, but had difficulty in deciding how this related to the cells at the far ends of 
their cross. 

Harriet M13 “minus a hundred 
Louise No ten 
Harriet No minus, minus a hundred 
Louise Minus, no minus two and then minus ten (Pair transcript)

They continued in this way for some time 
before producing the cross shown in Figure 
2. This was correct on the horizontal arm, 
but the numbers which would appear in the 
vertical arm of the cross (4, 12, 14, 16, 24) 
clearly could not appear in those positions 
in the Hundred Square. Louise explained to Harriet that the vertical arm was correct, 
on the basis of the symmetry of the formulae. This cross does, indeed, ‘work’ in so 
far as the sums for the two arms are equal, and these are 5 times the central number.  
Louise and Harriet’s conversation was all in terms of operations on the unknown 
central number in the cross, and they seem to be comfortable with using the cell 
reference as a placeholder for a general number. Other pupils tended to talk about 
particular values, but used similar arguments to explain the structure. 
In Ann’s class, Elizabeth and Shannon also worked confidently, producing 
appropriate formulae, and explaining their findings in general terms.  

Elizabeth We found out that the formula was seventy six times three equals the 
column and the row number (looks at Researcher) (.). Well not seventy six, 
the middle number times three equals the column and the row number 
…And that is because if you take ten from the, one of the column numbers 
(points to the bottom cell) and put it on the other column number (points to 
the top cell) then they both equal seventy six (Pair transcript)

13 14 15 16 

23 24 25 26 

33 34 35 36

43 44 45 46 

53 54 55 56 

Figure 1 

  =M13-10   

  =M13-2   

=M13-2 =M13-1 14 =M13+1 =M13+2 

  =M13+2   

 =M13+10 

Figure 2 
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In Graham’s class, some pupils offered similar descriptions of why the row and 
column totals are the same, for example: 

Pupil Basically they cancel each other out because 
Graham What cancels each other out? 
Pupil Well the top, the number above would be minus ten and the number below 

would be plus ten so they’d cancel each other out and then that one would 
be minus one and that would be plus one (Teacher transcript)

Although the language here is imprecise, it is clear that the pupils were describing the 
structure of a general pattern, which might apply to any ‘middle number’, just as 
Elizabeth recognised that her pattern would not just apply to seventy six.  
The examples offered here of pupils’ activity in the Hundred Square task suggest 
strongly that they are constructing a meaning for variable as a placeholder for any 
‘middle number’ in the cross, and using this generalized number to symbolize general 
rules, whether expressed as spreadsheet formulae or in natural language.  
We suggest that they are also constructing a utility for the use of generalized 
expressions of relationships, however they are expressed: that of showing structure. 
In this task we see pupils moving between explanations which are strongly rooted in 
the arithmetic and physical structure of the Hundred Square, generalized descriptions, 
and spreadsheet formulae which reflect the symmetry of that structure, even when in 
the case of Harriet and Louise, the formulae they produce do not actually match that 
arithmetic structure. 

ACTIVITY IN THE MOBILE PHONES TASK 
In Mobile Phones, pupils are presented with information about two different tariffs 
offered by a mobile phone company, together with the calltime someone uses each 
month for half a year. They are asked to set up a spreadsheet so that they can 
investigate which tariff offers the best value. 

Tariff Monthly Rental Calls November   15 minutes 
Tariff A £12.95 20p per minute December   48 minutes 
Tariff B £14.50 15p per minute January   80 minutes 

February   44 minutes 
March 113 minutes 
April   63 minutes 

They are then asked to investigate three more possible tariffs, and write a brief guide 
to say which tariffs would be most suitable for different types of users. 
At the beginning of the Mobile Phones task Harriet and Louise realized quite quickly 
what they needed to do to calculate the cost for November for tariff A. 

Harriet No ‘cause that’s “monthly (points to £12.95 on the table on the worksheet), 
you have to pay that anyway and then … that, times, where’s the times 
(enters ‘=A2’) 

Louise Why do you need “times? 
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Harriet You need times ‘cause you need to that (points to 15 minutes) “times 
twenty (Pair transcript)

After some difficulties with syntax, Harriet typed in the formula correctly. Although 
she typed A2 for the calltime for November, she actually talked about the calculation 
as ‘fifteen times nought point 2’. Louise realized that this would not achieve what 
they wanted. 

Louise No, no, Harriet listen.  If you do fifteen times twenty (she means 0.20) then 
it’ll only work for fifteen, it won’t work for forty-eight (the calltime for 
December)

Harriet No, no I put A, A”2 (points to cell A2 then looks directly at Louise as if 
checking that she understands) times twenty 

Louise It will only work for A2 
Harriet No it “won’t, it will work for A3 as well (points to A3) (Pair transcript)

In this exchange it is clear that both girls realized that they needed to give a general 
expression for the total cost, which would work for every month. Throughout their 
discussion, Harriet seemed to be using the specific number of minutes (15) and the 
cell reference (A2) interchangeably, suggesting that she is thinking of this quantity as 
a variable. Louise knew that using 15 would not give them an expression which 
would work for all the cases, but did not immediately recognize the power of using 
the cell reference. However, she was quickly convinced when they filled the formula 
down and she saw the costs for each month calculated.  
In Ann’s class, Max and Peter also struggled with the syntax involved in entering 
amounts of money, and despite having a sense of the structure of the calculation, 
made several errors in working out the cost for November. When they began on the 
calculation for December (48 minutes) Peter was clearly getting more confused. 

Peter I don’t get you 
Max (faces Peter and points to the worksheet throughout) That’s like your 

monthly line rental right, so you have to do, you have to pay that every 
month …And then say you used forty-eight minutes, that’s twenty p per 
minute so you have to times them to there plus twelve pounds ninety-five 

Peter Go on then tell me (sits back in chair) 

Max Do a ”formula [loudly] (palms face upwards then holds hands against 
forehead) (Pair transcript)

Max’s frustration continued for some time as they struggled with the syntax, getting 
answers which they recognized were incorrect. Eventually they tried to attract the 
teacher’s attention, but before she arrived, Peter looked across at the screen of the 
pupils sitting next to them. 

Peter (looking at the computer of pupils sitting next to them) Cool (.) ‘ere we 
didn’t get that answer, actually we didn’t get that answer. … What formula 
did you get for that (points) ‘cause we couldn’t get a formula (..) A2 
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Max Oh yeah it’s supposed to be A2 times 
Peter (looks at Max) You “stupid “[thing] you 
Max Yes I am stupid, we put twenty times fifteen (Pair transcript)

Although they had used cell references confidently in earlier tasks in the programme, 
Max and Peter had not immediately recognized the power of using them here. Max’s 
explanation suggests that his attempts to enter a formula were based on a clear image 
of the general structure of the calculation. Once he realized that he had been ‘stupid’, 
Max insisted that he could quickly complete the rest of the task, saying ‘I can get all 
these answers down in two seconds’.
Again in this task we see pupils moving from arithmetic calculations, to generalized 
calculations of the dependent variable (the total monthly cost), which are often 
expressed in informal language. These functional relationships are then formally 
expressed as spreadsheet formulae which are replicated to generate sets of data, 
suggesting that pupils are constructing meanings for variable as a range of values. 
Towards the end of the lesson, Peter and Max discussed their progress with the 
researcher. 

Researcher How you getting on? 
Peter Okay 
Max We’ve now realised what we’re doing (laughs) 
Researcher Why did you decide to write a formula? 
Peter ‘Cause it’s easier 
Max ‘Cause it’s quicker (Pair transcript)

Like Harriet and Louise, Peter and Max could now clearly see the utility of 
expressing the calculation of monthly costs in a general way, so that they could 
generate a lot of data for each tariff quickly. Pupils across all five classes went on to 
use line graphs to compare Tariffs A and B, and most were able to make some links 
between the way in which these costs changed as calltime increased, and the cross-
over points on the graph. Comparing the costs of further tariffs proved to be more 
challenging, and for all but a few pupils, time ran out before they were able to 
complete their users’ guide to all the tariffs. However, many did make some 
recommendations like the following in their reports, indicating that they had 
appreciated the value of comparing sets of data rather than individual values. 

We have found out that if you spend a lot of time on your phone (1 and a half hours to 2 
hours) you should go with Tariff C ... If you spend about (30 minutes to 1 and a half 
hours) on your phone then you should go with Tariff B ... if you spend a little amount of 
time on your phone (0 to 30 minutes) you should go with Tariff A. 
Tariff A is cheeper (sic) up to 30 minutes but when you get to 31 minutes Tariff A and B 
are equal, after that Tariff B is cheeper. (Written reports)
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DISCUSSION 
The snapshots of data presented here give an indication of the complex interactions 
between different elements in shaping the ways in which meanings are constructed in 
what may superficially appear to be similar activity on the part of pupils. In both 
tasks, pupils have a problem to solve involving generational activity, which takes the 
form of writing spreadsheet formulae. In the examples presented in this paper, we see 
the overall purpose of the task (understanding and explaining an intriguing pattern in 
order to design a new one, and comparing patterns of data produced by similar 
functions) as crucial in influencing the way in which the spreadsheet is used, and thus 
the meanings and utilities which may be constructed.
The teaching programme was designed around the ideas of different kinds of 
algebraic activity (generational, transformational and meta-level), opportunities for 
exploiting different features of the spreadsheet environment, and possibilities for 
pupils to move between arithmetic and algebraic structures, using natural language 
and informal notations, spreadsheet notation and formal algebraic notation. The 
sequence of tasks in the programme aims to combine these elements with different 
foci, in progressively more complex algebraic activity. However, as we have 
observed the use of the tasks by different teachers it has become apparent that subtle 
changes in emphasis by the teacher can lead to changes in the way that the purpose of 
the task is perceived. For example, an attempt to simplify the introduction to Mobile 
Phones may lead pupils to focus on calculating the cost for each month separately, 
rather than seeing the functional relationship between minutes used and total cost, so 
that the need for constructing a general expression using a variable is lost. As our 
longitudinal analysis of the teaching programme data continues, the ways in which 
the focus of attention within tasks may be shaped by teachers’ and pupils’ 
perceptions of purpose, and of the role of the spreadsheet, will be a significant theme. 
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PROPORTIONAL REASONING OF QUASI-ILLITERATE ADULTS 

Silvia Alatorre and Olimpia Figueras 
Universidad Pedagógica Nacional 

MEXICO 
 Centro de Investigación y Estudios 

Avanzados del IPN, MEXICO 

The main purpose of this paper is to describe the answers given by adults without 
primary schooling to different ratio- and rate-comparison tasks. The framework and 
the analysed data are part of an ongoing research, in which the responses of subjects 
of different ages and schoolings are studied. The behaviour of quasi-illiterate adults 
could throw some light on the effect of school on proportional reasoning in normal 
conditions; evidence will be shown regarding the similarities of their 
phenomenological behaviour with the one of people with regular schooling, 
especially  the influence of number structure and context upon proportional 
reasoning.
Part of an ongoing research on the strategies used by subjects of different ages and 
schoolings when faced to different kinds of ratio comparison tasks is reported in this 
paper. In the part here conveyed, we are concerned with the following question: Is 
proportional reasoning something developed exclusively at school, or does daily life 
provide the means to it? This question is difficult to answer in developed countries 
where all the population has a minimum of several years of schooling in which 
proportionality is taught. However, in Mexico about 20% of the adult population has 
none or very little schooling, which of course is nothing to be proud or glad about, 
but allows us to consider illiterate adults as epistemic subjects who could lead us to a 
tentative answer to our question. 

PREVIOUS WORK: A FRAMEWORK 
As stated above, we are investigating the strategies used by different subjects when 
faced to different kinds of ratio comparison tasks. In Alatorre and Figueras (2003) we 
explained what it is meant by “different kinds of ratio comparison tasks” and 
described the interview protocol used in the experimental part of the research. Some 
of the categories for classifying the questions, as well as the categories (strategies) for 
interpreting the answers, stem from a framework presented in Alatorre (2002). A 
succinct summary of both papers will be sketched here; the reader is referred to them 
for a more complete account. 
Among the problems calling for proportional reasoning, those in which the task is a 
comparison of ratios or of rates can be classified according to three issues: context, 
quantity type, and numerical structure. Table 1, taken from Alatorre and Figueras 
(2003), proposes a joint classification according to the first two; it blends together the 
classifications proposed by several authors (Freudenthal, 1983; Tourniaire and Pulos, 
1985; Lesh, Post and Behr, 1988; Schwartz, 1988; Lamon, 1993). 
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Rate problems: couples of expositions 
Intensive quantity surging from two 
quantities: both discrete, both 
continuous, or one of each type 

Mixture One quantity, discrete or continuous Part-part-whole problems: 
couples of compositions Probability  One quantity, discrete or continuous 

Geometrical problems: couples of -constructs Two continuous quantities 

Table 1: Taxonomy of ratio comparison tasks  
according to context and quantity types 

The third issue is the numerical structure. Before describing it, the notation used in 
this paper will be presented. In a ratio or rate comparison there are always four 
numbers and two “objects” (1 and 2) involved. In each object there is an antecedent 
“a” and a consequent “c”, and thus the four numbers may be written in an array, 
which is an expression of the form (a1,c1)(a2,c2). Also of interest may be the totals 
t=a+c, the differences d=a–c, and the part-whole quotients p=a/t. Alatorre’s (2002) 
proposition is a classification of all arrays in 86 different situations according to 17 
different “combinations” –successions of results when an order relationship is 
established in the array between the pairs of numbers t, a, c, d, and p–, and 17 
different “locations” –non-ordered pairs of the following alternatives for both 
quotients of the array: n: nothing (p=0); l: lose (0<p<½); d: draw (p=½); w: win 
(½<p<1); and u: unit (p=1)–. The 86 situations can be grouped in six difficulty levels, 
labelled I to VI. Because of space limitations, for the purpose of this paper only three 
difficulty levels will be used: L1 (65 situations belonging to levels I, II, and III), L2 
(3 situations belonging to level IV), and L3 (18 situations belonging to levels V and 
VI). The description of L1, L2, and L3 will follow the next paragraph. 
In the previous paragraphs a description of the classification of ratio-comparison 
problems was given. Here follows a classification of the strategies used by subjects in 
their answers to such problems. Alatorre’s (2002) framework, as presented in 
Alatorre and Figueras (2003), is to be used. Strategies can be simple or composed; in 
turn, simple strategies can be centrations or relations. Centrations can be on the totals 
CT, on the antecedents CA, or on the consequents CC. Relations, either  “within” or 
“between”, can be order relations RO (when an order relationship is established 
among a and c elements of each object and the results are compared), or subtractive 
relations RS (additive strategies), or proportionality relations RP. (For the purposes 
of this part of the research, RP relations were decomposed in several categories, 
which will be described further on). Composed strategies of two or more simple ones 
can be conjunctions X&Y (X and Y dominate), exclusions X¬Y  (X dominates), 
compensations X*Y (X dominates), or counterweights XY (neither dominates). Some 
examples will be given further on. Strategies may be labelled as correct, sometimes 
depending on the situation (combination and location) in which they are used. 
Correct strategies are RP in all situations; RO in wl, wd, or dl locations; CA in 
locations with n; CC in locations with u; and, in some situations, some composed 
strategies that can be considered as theorems in action (see e.g. Vergnaud, 1981). 
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The three difficulty levels mentioned before refer to which correct strategies may be 
applied. Grouped in L1 are all the situations where, in addition to RP, all other 
correct strategies may be used. In L2 and L3 only RP can be used; the difference 
among them is that L2 consists of situations of proportionality (both ratios or rates 
are the same), and L3 consists of situations of non-proportionality.

METHODOLOGY 
For the part of the research reported in this paper, a case study was conducted with 
six adults. They were students at a Centre for Adult Education in Mexico City; 
Reyna, Zoraida, and Ubaldo (aged 17, 49, 65) were learning to read and write, and 
Luisa, Dalia, and Toñita (aged 24, 25, 51) were studying a correlative primary school. 
All had less than the equivalent to four years of schooling. Four worked as 
housemaids, Toñita owned a small shop, and Ubaldo was a builder. They were 
interviewed for a time between 60 and 90 minutes, and the sessions were videotaped. 
During the interviews, subjects were posed several questions in each of eight sorts of 
problems, which were Rate problems and both kinds of Part-part-whole problems (in 
this research Geometrical problems are not dealt with). Table 2 describes them. 

CONTEXT Objects Antecedent Consequent Question 

N Notebook
problem  Stores Notebooks

(d)
Coins  
(d)

In which store are the 
notebooks cheaper? 

B Blocks
problem  

Walking
girls Blocks (x) Time (x) Which of the two girls 

walks faster? 

Y Yards
problem  

School-
yards

Children
(d)

Yard squares 
(x)

Which of the yards is more 
cramped with children? 

R
at

e

L Lemonade 
problem  Jars Lemons  

(d)
Cups with sug-
ared water (x) 

In which jar is the 
lemonade’s taste stronger? 

E Exams 
problem  Exams Correct

answers (d)
Incorrect
answers (d) 

In which exam did the 
student do better? 

M
ix

tu
re

J Juice
problem  Jars Concentrate

glasses (x) 
Water
glasses (x) 

In which jar does the 
mixture taste stronger? 

M Marbles
problem  Bottles Blue

marbles (d) 
Yellow
marbles (d) 

In which bottle is it more
likely to get a blue marble? 

Pa
rt-

pa
rt-

w
ho

le
Pr

ob
ab

ili
ty

S Spinner 
problem  Spinners Blue

sectors (x) 
Yellow
sectors (x) 

In which spinner is a blue 
sector more likely to be 
marked?

Table 2. The eight problems of the protocol (d=discrete; x=continuous)
Each of the problems was posed in different questions according to numerical 
structure. Fifteen such questions were designed, five in each of the difficulty levels; 
they are displayed in Table 3. All the problems may be posed in each of 15 questions, 
except for question 7, which has no sense in problems B or Y (see table 2). Questions 
1 to 10 were posed to all subjects; questions 11 to 15 only to those who used RP in 



www.manaraa.com

2–12  PME28 – 2004

Level Q u e s t i o n   n u m b e r s   a n d   t h e i r   a r r a y s   (a1, c1) (a2, c2)
L1 1 (2, 3)(2, 3), 2 (1, 4)(3, 2),   3 (2, 3)(2, 3),   6 (2, 2)(3, 2),   7 (3, 3)(2, 0)
L2 5 (3, 3)(1, 1), 8 (2, 1)(4, 2), 10 (3, 6)(1, 2), 12 (4, 6)(2, 3), 15 (8, 4)(4, 2)
L3 4 (2, 1)(3, 2), 9 (2, 5)(1, 3), 11 (5, 2)(7, 3), 13 (3, 2)(5, 3), 14 (2, 4)(3, 5)

Table 3. Numerical structure of the fifteen questions 
previous questions of the same problem. The 
problems were presented to subjects in a graphical 
form, which can be consulted in Alatorre and 
Figueras (2003); Figure 1 is an example. The 
problems were posed in this order: M, N, J, Y, S, L, 
E, B (see table 2). Within each one, 10 to 15 
questions were posed. In each of them, the subjects were asked to make a decision 
(left side, right side, or “it is the same”) and to justify it. 

RESULTS AND ANALYSIS 
A total of 513 answers was obtained; 424 (83%) of them were classified using the 
strategies system described above, and the rest either consisted of a decision without 
a justification (35), or had a justification that was only a description (27), or consisted 
of solution mechanisms different from the strategies described before (27). How 
these non-classifiable answers were handled will be described below. 
Two phases of analysis were undertaken: first a quantitative, then a qualitative one. 
In order to make a quantitative analysis possible, one point was given to all correct 
strategies, and ½ point was given to answers that could be incomplete expressions of 
correct theorems in actions. Also, ½ point was given to all non-classifiable answers 
that fulfilled the following conditions: correct decision and either no mechanism or a 
mechanism that could eventually become correct (such as arithmetic or geometric 
approximations). Then, for each subject a score was obtained for each group of 
context and difficulty level, and expressed as a percentage of the questions answered 
by the subject in that group. The results are shown in Figure 2. 

Figure 2. Subjects’ performance  
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Figure 1. Question N-9
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As Figure 2 suggests, the six subjects can be divided in two groups. Both groups 
obtained their best results in Rate and their worse in Probability problems, but with 
different behaviour. Subjects of the first group (Zoraida and Reyna, dotted lines) only 
answered fairly well the L1 questions of all contexts and dropped their performances 
in levels L2 and L3. The latter proved to be very difficult for them; their performance 
averaged 19% in Rate problems and was null elsewhere.
The remaining subjects had also their lowest results in L3 of all contexts, but only in 
Probability problems was it null for all of them, and elsewhere the decrease was not 
as marked as in the first group. Compared to the first group, subjects of the second 
one had a tendency to obtain better results in all L1, and significantly higher 
performances in L2. All of the subjects except Luisa even had better results in L2 
than in L1 in the Rate problems, showing that they could recognise and appropriately 
solve situations of proportionality. 
For the qualitative phase of analysis, the strategies used by subjects were studied. All 
sorts of strategies were used; here are some examples of centrations, RO and RS: 

Reyna: I choose the right side, because there’re more children and the space is 
smaller (question Y-2, correct composed strategy CA & CC). 

Ubaldo: She did better on the left side because of the correct ones, although she has 
six wrong answers (question E-10, incorrect composed strategy CA ¬ CC).

Reyna: I choose the right side, because it has more concentrate than water, and in 
the other one they’re the same (question J-6, correct simple strategy RO). 

Luisa: It’s the same, because in both there are more blue marbles and fewer 
yellow ones (question M-9, incorrect simple strategy RO). 

Zoraida: The right side, because there’re two more lemons than cups, and on the left 
side there’s only one more (question L-8, incorrect simple strategy RS). 

As for the correct proportionality relations, it became necessary to focus on the 
different kinds of RP. Four kinds were identified, which are described below:  
RPM (“Multiples”): The subject realizes that there are multiples among the numbers 
of the array, either within an object or between objects. Example: 

Dalia: It’s the same: The left side is half as much as the right side (question E-8). 

RPG (“Groupings”): The subject uses groups of specific amounts of antecedents and 
consequents, identifies them as appearing once or several times in each object, and 
compares the remaining elements (if any). Example: 

Toñita: I choose the right side, because on the left side there’s one and a half lemon 
for a cup, on the right side one and a half for one, one and a half for another 
one, and one and a half for another one. And there’s half a lemon more
(question L-13). 

RPE (“Equalizing”): The subject executes a physical or a mental action of multiply-
ing or dividing one of the objects by a certain quantity and by doing so either 
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equalizes both objects, or he/she equalizes the antecedents (or consequents), which 
permits the comparison of the consequents (or antecedents). Example: 

Ubaldo: I choose the left side, because in one more minute the girl would walk four 
blocks, and the one on the right [only] walks three blocks in those two 
minutes (question B-4). 

RPR (“Rate or ratio comparison”): The subject calculates in each object the rate or 
the ratio a:c, the part-part quotient a/c or the part-whole quotient a/t. This is generally 
accomplished through the calculation of the unity value. Then he/she compares both 
results. Example: 

Luisa: I choose the left side, because on the right a notebook costs three coins, and 
on the left it would cost less than three coins, about two and a half coins 
(question N-9, see Figure 1). 

The qualitative analysis is based on two considerations: whether the correct strategies 
were RP (and, in that case, what kind of RP), and the classification of incorrect 
answers. As with the quantitative analysis, the same two groups can be identified. 
In the first group, Zoraida and Reyna’s behaviour was characterized by the use both 
of centrations, either in simple or in composed strategies, and order relations. These 
are strategies that may lead to correct answers in L1, but necessarily lead to incorrect 
ones in L2 and L3. In the case of these two subjects, these strategies account for all of 
the correct answers in L1 and, mainly centrations, for most of the incorrect ones in 
L2 and L3. The few exceptions are some additive strategies and, in the Spinner 
problem, a mechanism of choosing the spinner with a bigger chunk of blue colour, 
such as the left side in Figure 3. In levels L2 and L3 each 
of the subjects had six scarce correct RP strategies, in the 
Notebooks and Lemonade problems, and once each in the 
Blocks and the Juice problems. These few attempts at 
proportional reasoning strategies were mainly of the RPM 
kind in L2 proportionality situations. Reyna displayed as 
well a couple of RPEs and Zoraida a couple of RPRs. 
In the second group, the rest of the subjects showed a much richer behaviour, 
characterized by what seems to be a quest for the easiest correct strategy. In L1, the 
four subjects profusely used the simple and correct RO relations and theorems in 
action; however, all of them used at least once a RPR strategy. All four strategies 
leading to the answer “it is the same” in L2 were used: mostly RPR, but also RPG, 
RPE, and RPM (in this order); and all but RPM (in the same order) were used to 
choose one of the objects in L3. Save for Ubaldo, who never used RPM, all four 
subjects used all four RP strategies, in the same frequency order. This was especially 
notorious in the Rate problems, where RPR accounts for 64% and RPG for 27% of all 
RPs. As for the distribution among contexts, all four subjects used RP strategies in 
the four Rate problems, with small variations (RP were more frequently used in the 
Lemonade problem and less frequently used in the Yard problem), but used them 

Figure 3. Question S-8
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much more sparingly in Part-part-whole problems: Two of the subjects (Ubaldo and 
Luisa) used them only in the Juice problem, one (Toñita) used them as well twice in 
the Spinner problem, and only one (Dalia) used them in the Exams problem. The use 
by these subjects of RP strategies in Probability problems was very scarce (Spinners) 
or null (Marbles).  
An analysis of the incorrect answers of the four subjects of the second group leads to 
the following. In the Rate problems, only one of the subjects (Luisa) used centrations 
and RO relations incorrectly in L2 and L3; all other incorrect answers were due to 
either additive relations RS or incorrect attempts at some of the RP strategies, mainly 
with arithmetic mistakes. This was also the case in the Juice problem. In the Exams 
problem all four subjects incorrectly used centrations, and some of them used 
incorrect RO and RS relations. The abundant incorrect answers in both Probability 
problems range from centrations to RO relations to the mechanism of big chunks 
described above but also the inverse mechanism: choosing the side where the blue 
sectors are more scattered, such as the right side in Figure 3. There were also some 
mechanisms due to misconceptions of randomness, such as the following: 

Ubaldo: It’s the same. If it’s my luck, I win. I win ’cause I win. If not, I don’t win; 
even with twenty blue marbles and one yellow one, I don’t (question M-4). 

CONCLUSIONS
Both phases of the analysis lead to similar interpretations. Some of the subjects with 
little or no schooling approach the rate- and ratio-comparison problems in ways 
similar to that reported in the literature about young children (e.g. Noelting, 1980): 
their first choice being centrations, they only succeed where centrations lead to the 
correct answer, and fail elsewhere. This is to say, their performance depends deeply 
on the numerical structure of the questions, and they succeed where it allows non-
proportional reasoning. However, they do occasionally produce one form of 
proportional reasoning, mostly in proportionality situations. 
Another group of subjects does produce an assortment of forms of proportional 
reasoning. They succeed in the most easy questions mainly by using correct strategies 
different from the proportionality relations, but they also may succeed in questions 
where the only way to reach a correct answer is with the use of proportional 
reasoning. Here they used different kinds of strategies, apparently in a search for the 
easiest one. The performance of these subjects depends on the context: it is fairly 
good in all Rate problems, but decreases in Part-part-whole problems. The relative 
success in Mixture problems is due mainly to success with the Juice problem, since 
the other Mixture problem, Exams, had a very low success rate, probably due to the 
fact that exams are alien to the experience of these subjects, who are only beginning 
their schooling. This corroborates that familiarity with the problem is one important 
factor for success in proportionality problems (Tourniaire and Pulos, 1985; Lamon, 
1993). Both Probability problems had also very low success rates, which may be due 
to the combined effect of lack of familiarity and the difficulties of randomness. 
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This study confirms some of the findings reported in the literature of proportional 
reasoning (Tourniaire and Pulos, 1985): that there are important effects of numerical 
structure and of context, that Rate problems are easier than Part-part-whole ones, and 
that familiarity with the problem is crucial. Therefore, these results seem to be 
independent of the schooling of the subjects considered. 
The responses of the quasi-illiterate subjects who participated in this study resemble 
those of some university students (Alatorre, 2000): Some use non-proportional 
strategies and get entangled in number structures which are more complex than the 
easiest ones, whereas some are able to use proportional strategies and surmount the 
numerical difficulties. The latter obtain much better results than the former, although 
their performance is context-dependent.
The literature on the subject has long ago demonstrated that schooling is not a 
sufficient condition to reach an appropriate proportional reasoning. The fact that daily 
life has provided some of the quasi-illiterate subjects with a fairly good performance, 
at least in Rate and some Part-part-whole contexts, seems to suggest that schooling 
might also not be a necessary condition for proportional reasoning.  
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USES OF EXAMPLE OBJECTS IN PROVING 

Lara Alcock
Graduate School of Education, Rutgers University, USA 

This paper builds upon discussions of the importance of semantic or intuitive 
work in proving by identifying three ways in which experienced mathematicians 
use example objects in constructing and evaluating proofs.  It observes that 
students often do not use objects in these ways, and discusses the pedagogical 
question of how we might teach students to be more effective in proving by 
designing instruction to focus their attention on relevant objects.  Data are 
drawn from interviews with five mathematicians experienced in teaching an 
introductory proofs course.

INTRODUCTION
It is well-recognized that students sometimes attempt to prove a general 
statement by empirical means, checking a number of examples to give evidence 
of its truth, rather searching for a deductive proof (e.g. Harel & Sowder, 1998).  
This is considered to be an inappropriate approach, and students are warned not 
to “prove by example”.  On the other hand, it is also noted that semantic or 
intuitive considerations can be very important in the work of successful 
mathematicians (e.g. Thurston, 1995).  This paper builds on these considerations 
by offering more precise characterizations of the ways in which successful 
mathematicians use example objects to aid in proof construction and evaluation.  
RESEARCH CONTEXT 
The characterizations to be given below are derived from analysis of interviews 
with mathematicians experienced in teaching a course called “Introduction to 
Mathematical Reasoning”, which is designed to provide students with a 
grounding in proving before they take courses in real analysis and abstract 
algebra.  This is taught at a large state university in the USA.  Classes typically 
have between 20 and 25 students, so that the professors are in relatively close 
contact with individuals and become familiar with their work during the 14-
week course.
Five participants were involved in this exploratory study, which set out to 
address a gap in mathematics education research on proof and proving by 
drawing on the experience held by mathematicians who teach such courses, and 
seeking to formalize this into knowledge that can be more readily discussed and 
applied.  Each participant was interviewed up to three times during a year.  The 
first interview asked the participant to describe their experience in teaching this 
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course, to give their views on important things that students should learn, and to 
describe common student mistakes and misunderstandings and their pedagogical 
strategies.
These interviews were transcribed and analyzed following Glaser (1992).  First, 
conceptual descriptions were added to the transcript, and summarized in memos.  
Concurrently, further memos were made about questions arising from this data, 
typically of a need for clarification, or of a possible theoretical link between 
comments.  At this stage the analysis rotated regularly from one participants’ 
interview to another, in order to facilitate synthesis of the ideas raised and to 
avoid becoming focused on the opinions of a single participant.  Next, the 
memos were sorted according to their main substantive and/or theoretical 
content, producing a system of categories.  Subsequent interviews asked more 
specific questions designed provide increasing saturation of the categories. 
One outcome of this analysis was the identification of three uses of example 
mathematical objects in the mathematicians’ reasoning, with a frequent lack of 
such use on the part of students.  These are: (1) understanding a statement, (2) 
generating an argument, and (3) checking an argument. They are described and 
illustrated below.
UNDERSTANDING A STATEMENT 
Our first point is that mathematicians view the instantiation of objects as 
important in reaching a meaningful understanding of a mathematical statement.  
In these excerpts, Professor 1 remarks upon this as a natural first step in 
understanding a definition. 

P1: …So one of the things, again, that’s second nature to me but it’s not to them [the 
students], is that if I see a definition, I immediately instantiate it.  You know, just try 
some examples of this definition, and try to fit it in. 

P1: …what happens is…that you describe a new definition, you say “let f be a function, 
let x be a real number, we say that…” and then “some relationship between f and x
holds if…blah, blah, blah.”  So then what they have to do, they have to realize that this 
definition only makes sense in the context of, I have to have a function in mind and I 
have to have a [number] in mind… 

He notes, however, that such instantiation in response to a definition is not 
typical behavior for students in his classes. 

P1:  And what they’ll do is typically if you have a sequence, you know, if I have a 
sequence definition to use in the rest of the problem, and they don’t understand the 
definition, they’ll just skip that sentence and go on.  I will – they will come in for help 
on a problem, and five or ten minutes into the discussion I’ll realize that, that they 
never bothered to process this particular definition.  They have no idea what this 
means. 
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In response to this phenomenon he has invented task sequences involving the 
construction of example objects that satisfy various combinations of properties 
associated with certain definitions.

P1: So, what I’ve been trying to do is to have these exercises where the whole purpose of 
the exercise is just for them to process a mathematical definition.  […]  I have one 
where I, where I just define what it means for a – well, what a partition of a set means.  
I define it formally, so it has these two conditions, a collection of subsets, such that the 
empty set is not one of the subsets, for every element of the underlying set there is a 
subset that contains it, for any two sets in the partition the intersection is empty […] 
And then I just ask okay, construct three examples of a partition on the set {1,2,3,4,5}.  
And then, okay, construct an example of a collection of sets on {1,2,3,4,5} which 
satisfies the first two properties but not the third.  The first and the third properties but 
not the second, the second and the third properties but not the first. 

This task sequence resembles those suggested by Watson and Mason (2002), 
who report that requests for examples satisfying various constraints can 
encourage students to extend their thinking beyond “typical” examples.   Such 
example generation is also recommended by Dahlberg and Housman (1997) on 
the strength of its effectiveness as a learning strategy when faced with a new 
definition.
GENERATING AN ARGUMENT 
In the second use of example objects the mathematician either builds objects or 
instantiates known ones with the goal of generating a proof.  The professors 
spoke of one way in which this might be achieved directly, and another less 
obvious heuristic that uses an informal version of the indirect argumentation 
used in proof by contradiction.  The direct use involves trying to show that a 
result is true in a specific case, in the hope that the same argument or 
manipulations will work in general.

P1: It’s just to get them…if they have to prove, “for all n, something”, when they come to 
the induction step, and the induction step is not completely trivial, so it actually 
involves…actually think about it and you have to come up with an idea.  And so, well 
how do you go about finding this idea?  And I, I try to convey to them, that the first 
thing you do, is that…suppose I’m trying to prove it for n equals 10, how can I use 
that it’s true for n equals 9?  So, do something very specific, do a concrete example 
and try to reason from that.   

P5: See if you can get from 2 to 3, if you can’t get from n to n plus 1. 

The second, indirect case reveals a less obvious way of thinking about proving 
universal statements.  In the excerpt below, Professor 1 talks about generating a 
proof for such a statement by searching for a reason why one could not find a 
counterexample to this statement. 

P1: …the way I often think about a proof is that, you know you imagine this as, try to beat 
this.  Meaning, try to find a counterexample. […]  If you think about, if you think 
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about the reason why you were failing to find a counterexample, okay, then, that 
sometimes gives you a clue, to why the thing is true.   

When the interviewer commented that it seemed non-obvious that one would try 
to prove a universal statement by thinking about why there could never be cases 
for which it did not hold, he remarked that in fact he considered this a natural 
approach, and gave the following explanation. 

P1: The natural…the sort of natural thing that our brains can do, is sort of build examples 
and check them.  Okay, and…all you, you know if one thinks of universal statements 
as saying that it’s really a statement of impossibility, it’s the negation, right?  It’s a 
statement that you can’t…do something. […] And the way you understand that you 
can’t do it is by thinking about doing it. 

Professor 2 describes this indirect strategy very concisely, and in doing so 
highlights its relationship to a straightforward way of proving an existential 
statement.

P2: …if it’s an existential statement I look to see whether I can produce an example.  And 
if it’s a universal statement I probably try to show that I can’t find a counterexample. 

Professor 1’s comments resemble the ideas of “mental models” theories in 
which human beings generate and evaluate deductions by instantiating a model 
of the situation under consideration, evaluating a statement relative to that 
model, then varying the model in a search for counterexamples (Johnson-Laird 
& Byrne, 1991).  The difference here is that one is not looking for a 
counterexample, but for a reason why one cannot build one, which will then 
form the basis for an argument. 
CHECKING AN ARGUMENT 
The third way in which professors routinely use objects in proving is in 
checking the correctness of individual deductions.  Professor 1 describes this 
process in the abstract as follows 

P1: …there is a locality principle about proofs, about every proof, and that is that we 
somehow recognize that even though you’re proving some very specific thing, that 
there are portions in the argument.  Each portion in the argument is actually doing 
something more general. […]  And therefore I can do a local check on this part of the 
argument by thinking about that more general situation and doing, examples within 
that more general situation […] so that’s one thing that, you know, is just completely 
second nature to me and to most mathematicians, is that you’re constantly doing those 
kinds of checks.

A good illustration of this process is provided by Professor 3 in the following 
comments on a student proof attempt.   

P3: For instance, problem: “express the number 30 as the difference of two squares.  Or 
show that it cannot be done”.  Answer: “It cannot be done because 30 is divisible by 6 
and a number that is divisible by 6 cannot be written as the difference of two squares.”
Well, 12 is 16 minus 4.  Ah…take any number that’s a difference of two squares, 
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multiply it by 36, you’ll get a number that’s the difference of two squares and is 
divisible by 6...

In this case, although the proof is about the number 30, a general claim is made 
about numbers that are divisible by 6, and it is this claim that is shown to be 
incorrect by considering examples in the “general situation” of numbers that are 
divisible by 6.  Once again, the study indicated that students appear not to 
engage in this process to a degree that their professors would like.  In this 
excerpt, professor 3 expresses frustration at the fact that students regularly write 
statements that are “obviously wrong”, in the sense that they could readily be 
refuted using such checks. 

P3: …I don’t have a clue as to…what gets them…to, to say things like that.  In other 
words I would say, things that are obviously false.  To a normal person with a little bit 
of mathematical education it would seem obvious that you could never say such a 
thing because it’s so obvious that it’s false.  Take any example that you want, you see 
clearly that it’s false.

DISCUSSION 
Summary
This paper contributes to our understanding of the semantic aspects of proving 
by identifying three specific ways in which thinking about example objects can 
assist in this process: 
1. Instantiating examples in order to understand a statement or definition. 
2. Generating an argument for a universal statement, by (directly) arguing about 

or manipulating a specific example and translating this to a general case or 
(indirectly) trying to construct a counterexample and attending to why this is 
impossible. 

3. Considering possible counterexamples to general claims in a proof. 
Each of these involves the consideration of example objects in a crucial way, as 
opposed to algebraic manipulations or deductions based only on the form of a 
statement.  Each is also considered natural and even “second nature” by the 
mathematicians who took part in this study; they regularly commented upon 
their surprise when students made errors that could have been avoided by their 
use.
There are at least two possible reasons why students may not use example 
objects effectively in the construction and evaluation of proofs.  One is that a 
key difference between novice mathematics students and their teachers is simply 
that the teachers have access to a great deal more experience with examples 
(Moore, 1994).  A second is that students may not be accustomed to thinking in 
about the objects to which statements apply, instead thinking of mathematics 
(including proof) as a procedural enterprise in which algebraic statements are 
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laid out and manipulated according to certain rules or a standard format (Hoyles, 
1997).
In either case, it seems that it would be helpful for students to improve their 
knowledge of example objects.  However, experience in itself may be 
insufficient to support successful proof attempts; we do not wish students to 
offer examples in place of deductive proof.  I suggest that the specific uses of 
example objects outlined above can help us to think about teaching students to 
use such objects more effectively. 
Pedagogy: understanding a statement 
Dahlberg and Housman (1997), Mason and Watson (2002) and Professor 1 all 
suggest setting tasks that require students to generate examples with given 
combinations of properties. Another possible design involves providing both 
objects and properties and asking students to decide which properties apply to 
which objects.  I have used such a task in an introductory real analysis class.  
Students were presented with this list of subsets of the reals, and definitions of 
the given topological properties: 

� , N, Q, R, 0,1� �, 0,1� �, 0,1� �, 0,1� �, 0,�� �, {1/n|n�N}, the Cantor set 

Open, limit point, isolated point, closed, bounded, compact 
They were asked to work in pairs and decide (without proof) which sets (or 
which points) satisfied which properties. Such a task design does not ask for 
example construction, but may be useful in cases where the objects to be 
considered are unfamiliar or where one wishes students to engage with non-
standard examples.  Certainly it goes beyond the typical lecture or book 
presentation of one or two “standard” examples for each definition, thus 
arguably encouraging the idea that we can ask about the applicability of 
properties more widely, and discouraging reliance on “prototypical” concept 
images (Vinner, 1991).
Pegagogy: generating an argument 
In this study, the professors’ descriptions of the indirect heuristic seem 
particularly interesting, since mathematicians generally find it difficult to 
describe the origin of the “key ideas” (in the sense of Raman, 2003) that lead to 
a proof.  This heuristic is one way of systematically seeking such ideas, and 
could be articulated as part of a broad strategy for proving universal statements 
in which one first tries to prove the statement directly, and, if this fails, tries 
instead to construct counterexamples to the statement, articulating what prevents 
this from being accomplished. 
Of course, it is often not easy to clearly articulate a mathematical claim.  
However, the heuristic seems no less teachable than that of trying particular 
examples in the hope of finding a generalizable argument.  Its initial 
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introduction may be facilitated by experience with certain tasks – Antonini 
suggests that questions of the form “Given A, what can you deduce?” are likely 
to lead to indirect arguments (Antonini, 2003).  Once in place its regular use by 
a professor may help students to overcome the feeling that they do not know 
how to proceed when faced with a statement that seems “obviously true” or 
otherwise difficult to prove. 
Pedagogy: checking an argument 
This study suggested that the idea of checking an argument by considering 
possible counterexamples is already part of the culture of the participants’ 
classrooms.  They informally model the process when explaining their own 
reasoning, and give tasks that ask students to identify false statements and give 
counterexamples.  Here I would like to suggest that the use of these strategies 
could be strengthened in two ways. 
First, by highlighting the fact that counterexample-production tasks have the 
same structure as that of making a “local check” of a deduction in a proof, but 
that this is often disguised by the fact that instead of one line saying “For all A, 
B” (or “If A then B”), we have two lines of the form: 
A.
Therefore/so/hence B. 
Although this seems a trivial distinction to a mathematician, it may not to a 
student who is struggling to coordinate their understanding of the form and 
content of an argument. 
Second, by giving specific consideration to how to decide which objects to 
check.  The subtleties involved in this process are highlighted by the following 
example of a student proof attempt given by professor 3.   

P3: …for example, I can show you a homework problem in which a student is trying to 
prove that the number 1007 is prime, and he said “well 7 is prime, and adding 1000 
doesn’t change anything”.  End of proof.

Faced with such a claim, the mathematician infers a general statement about 
adding primes to other numbers, and searches for a counterexample to this.  
However, in this case there are at least three possible general statements, and the 
central claim is not couched in language that makes its logical structure clear.  
Indeed, more acceptable mathematical writing also contains such “suppressed 
quantifiers” (Selden & Selden, 1995).  Thus, being able to re-frame a statement 
in more appropriate language is closely connected with deciding which objects 
to check.  Emphasizing this when teaching appropriate “mathematical language” 
may help to explain the need for clarity as well as facilitating checking. 
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Further research 
Having identified these uses of example objects as an important feature of 
mathematicians’ thinking, and as one that is often lacking in students, two 
questions arise: (1) Does this lack account for the failure of students in 
introductory proof courses?  (2) If so, can teaching that focuses more on the 
underlying mathematical objects help students to be more successful?  The first 
of these questions is being investigated now in a study comparing explanations 
of proof attempts by students in the Introduction to Mathematical Reasoning 
course.
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IMPROVING STUDENT TEACHERS’ ATTITUDES TO 
MATHEMATICS

Solange Amorim Amato
Universidade de Brasília, Brasília, Brazil 

The research results presented in this paper were part of an action research 
performed with the aims of improving primary school student teachers (STs)’
understanding of, and attitudes to, mathematics. The teaching strategies used to help 
STs’ improve their understanding and attitudes were similar to the ones suggested for 
their future use in teaching children. The data indicated that most STs improved their 
understanding. Some also said that they had improved their liking for the subject and 
their remarks clearly demonstrated a connection between the affective and cognitive 
domains. Yet others said that their attitudes towards mathematics had not changed 
much. The two main aims of this action research remain incompatible in the 
perception of some of these STs. 

INTRODUCTION
Research has revealed that some primary school teachers and STs demonstrate 
negative attitudes towards mathematics (e.g., Ball, 1990; Relich and Way, 1994 and 
Philippou and Christou, 1998). There are many dimensions in the literature about 
attitudes to mathematics (e.g., Ernest, 1989 and Relich and Way, 1994). The focus of 
the present study is in the liking dimension of attitudes. Skemp (1989) says that the 
use of mathematics by adults depends on whether they liked mathematics at school. 
Considering that primary school teachers have to continue studying and using the 
mathematics they are supposed to teach, the liking dimension of attitudes was 
considered more important than the other dimensions. 
For Skemp (1976) relational understanding involves knowing both what to do and 
why it works, while instrumental understanding involves knowing only what to do, 
the rule, but not the reason why the rule works. Skemp argues that the development 
of positive attitudes to mathematics is dependent on the type of teaching. Negative 
attitudes can be generated by a mismatch which occurs when the teacher teaches 
instrumentally, and the student tries to understand relationally. Baturo and Nason 
(1996) explains that the main product of instrumental teaching is the lowered self-
esteem of students who do not manage to memorise facts and algorithms without 
meaning. Research shows that some adults with a degree in other subjects (e.g., 
Quilter and Harper, 1988) and primary school STs and teachers (e.g., Haylock, 1995 
and Brown et al., 1997) tend to blame instrumental teaching for their negative 
attitudes to mathematics. Brown et al. (1990) suggest that an attempt is needed to 
consider the way by which primary school STs construct mathematical knowledge 
and what attitudes result from such construction. 
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THEORETICAL FRAMEWORK AND RELATED LITERATURE 
In this study I have adopted a socio-cultural perspective based on the ideas of Saviani 
(1993) who argues for a pedagogy of liberation that places great emphasis on the 
acquisition of the cultural content in the school curriculum: “the oppressed does not 
become liberated if s(he) does not master all that the oppressors master. Therefore, to 
master what the oppressors master is a condition for liberation” (p. 66). In a similar 
way, Delpit (1995) points out that teachers should help socially disadvantaged and 
African-American students “to learn the discourse which would otherwise be used to 
exclude them from participating in and transforming the mainstream” (p. 165). So 
STs need not only to develop a more positive attitude to mathematics, but also to 
acquire a mathematical understanding of an adequate level to face the responsibility 
of communicating the subject to children and providing effective learning 
experiences to socially disadvantaged students. 
Researchers believe that teachers’ attitudes to mathematics can in some way influence 
their students’ attitudes and mathematical learning (e.g., Relich and Way, 1994). 
Therefore, many teacher educators think that developing positive attitudes toward 
mathematics should be an important aim in the education of primary school STs and 
teachers (e.g., Relich and Way, 1994 and Haylock, 1995). STs’ attitudes are said to 
affect: (a) their approach to learning how to teach (Goulding et al., 2002) and (b) the 
way they will teach in the future (e.g., Ball, 1988) and the classroom ethos (e.g., 
Ernest, 1989 and Goulding et al., 2002). Teachers are said to rely on memories of 
themselves as school students to shape their teaching practices (e.g., Ball and 
McDiarmid, 1990). These memories are also said to affect what they learn from 
teacher education. Some STs find it difficult to take different approaches from the 
ones they observed as school students (e.g., Ball, 1988). Ernest (1989) argues that 
teachers’ attitudes to mathematics may influence their enthusiasm and confidence to 
teaching the subject. This in turn may affect the classroom ethos and consequently 
affect their students’ perceptions of mathematics. 
Bromme and Brophy (1986) think that teachers model their attitudes and beliefs 
during their teaching. In most cases messages are conveyed without teachers’ 
awareness. Yet the most direct influence of primary school teachers’ negative 
attitudes to mathematics on their students’ learning appears to be time allocation. 
Bromme and Brophy point out that “such teachers have been found to allocate more 
instruction time to subject-matter areas that they enjoy, and less to areas that they 
dislike” (p. 122). Low time allocation was found to restrict students’ opportunities to 
learn (e.g., Fisher, 1995). Therefore, teachers need to improve their liking for 
mathematics and to be aware of the benefits of high time allocation especially for 
activities which have the potential to develop relational understanding. 
Most of the attempts to help STs improve their attitudes to mathematics in teacher 
education seem to involve improving their understanding of the subject. The 
integration between the re-teaching of mathematics and the teaching of mathematics 
pedagogy is said to be a way of improving teachers and STs’ understanding (Bezuk 
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and Gawronski, 2003) and attitudes to mathematics (e.g., Weissglass, 1983). Most of 
the literature reviewed concerning such integration suggests re-teaching mathematics 
to teachers and STs by using the same methods that could be used to teach 
mathematics in a relational way to school students. To develop positive attitudes to 
mathematics in children, primary school teachers must learn how to set up learning 
experiences that are enjoyable, interesting and give the learner a sense of 
accomplishment. In order to be able to do this, the teachers must have had such 
experiences themselves (Weissglass, 1983). 
Haylock (1995) and Philippou and Christou (1998) report that improving STs’ 
mathematical understanding has produced positive effects in their attitudes. Haylock 
(1995) presents several mathematics representations in order to help STs develop 
understanding of the concepts and procedures in the primary school curriculum. 
Philippou and Christou (1998) used the history of mathematics in order to help STs 
understand mathematics concepts. These teacher educators think that improving STs’ 
attitudes is a by-product of the effort to improve their understanding. I took a similar 
view and in the present study the strategic actions to improve STs’ understanding 
were thought to be helpful in improving their liking for mathematics. 

METHODOLOGY
I carried out an action research (Amato, 2001) at University of Brasília through a 
mathematics teaching course component (MTCC) in pre-service teacher education. 
The component consists of one semester (80 hours) in which both theory related to 
the teaching of mathematics and strategies for teaching the content in the primary 
school curriculum must be discussed. There were two main action steps and each had 
the duration of one semester thus each action step took place with a different cohort 
of STs. A teaching programme was designed in an attempt to: (a) improve STs’ 
relational understanding of the content they would be expected to teach in the future 
and (b) improve their liking for mathematics. Four data collection instruments were 
used to monitor the effects of the strategic actions: (a) diary; (b) pre- and post-
questionnaires; (c) middle and end of semester interviews and (d) pre- and post-tests. 
Much information was produced by these instruments but, because of the limitations 
of space, only some STs’ responses related to changes in their attitudes to 
mathematics are reported. 
In the action steps of the research the re-teaching of mathematical content was 
integrated with the teaching of pedagogy by asking the STs to perform children’s 
activities which have the potential to develop relational understanding of the subject. 
The activities were designed with four other more specific aims in mind: (i) promote 
STs’ familiarity with several mathematical representations for each concept (real 
world contexts, concrete materials, pictures and diagrams, spoken languages and 
written symbols); (ii) expose STs to several ways of representing and performing 
operations (with the aid of concrete materials, mentally and with written symbols); 
(iii) help STs to construct relationships among concepts and operations and (iv) 
facilitate STs’ transition from concrete to symbolic mathematics. 
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SOME RESULTS 
During the action steps of the research, STs’ previous attitudes to, and understanding 
of, mathematics were elicited by two pre-questionnaires. One involving questions 
related to their liking for mathematics at school and the other asking them what they 
felt about their understanding of mathematics at school. In both semesters most STs 
who said they disliked mathematics said they often did not understand mathematics at 
school. A relationship between liking and understanding mathematics also appeared 
to exist. The majority of the STs who said they liked mathematics said they often 
understood mathematics at school. Some of the STs responses to the open questions 
in the pre- and post-questionnaires and in the interviews revealed further and 
qualitative evidence about the relationship between the affective and cognitive 
domains. 
The number of first and second semester STs who responded according to a certain 
theme will be represented by n1 and n2 respectively. The post-questionnaire about 
understanding was answered by 24 STs in the first semester and by 38 STs in the 
second semester. Question (1a) of the post-questionnaire about understanding was: 
“What changes happened in your understanding of the mathematical content 
discussed in this course component? Give examples”. All STs who answered the 
question said there had been changes in their understanding (n1 = 21 and n2 = 27) 
and/or in their pedagogical knowledge (n1 = 4 and n2 = 11) of the content discussed 
in the course component. In the second semester there were five responses about 
changes in their attitudes towards mathematics and towards certain mathematical 
content. An example is: “The most meaningful changes were the ones about the 
rediscovering of mathematics. I learned, for example, that a fraction is not a beast of 
seven heads”. Those responses to a question asking about changes in understanding 
tends to show that some relationship seems to exist between the affective and 
cognitive domains for those STs. 
The post-questionnaire about attitudes was answered by 30 STs in the first semester 
and by 40 STs in the second semester. Question (3a) in the post-questionnaire about 
attitudes was: “Did your involvement with the activities proposed to teach 
mathematics in the initial grades change, in any way, your feelings about 
mathematics? Tick your answer.” In question (3b) the STs were asked to write about 
the aspects in the MTCC which they thought had contributed to the changes in their 
liking for mathematics expressed in the previous close question (3a). In question (3b) 
some STs (n1 = 11 and n2 = 10) included remarks about changes in their 
understanding of mathematics. It was interesting to notice the number of those 
remarks in a question asking them about the aspects in the MTCC which contributed 
to changes in their liking for mathematics. An example is: “The way to understand 
and teach fractions was very gratifying for me. I had a lot of difficulty in teaching and 
mainly in understanding equivalence of fractions”. 
Some of those remarks were also from STs who said that their liking for mathematics 
had not changed, like: "Actually I have always liked mathematics, although I had my 
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difficulties. The interesting thing in this course component was to discover the 
reasons for the results and to understand the mathematical reasoning". There were 
also remarks about changes of attitudes in other less focused questions in the 
questionnaires and interviews. Those responses were considered more valid as they 
were not prompted by the wording of the question. Some of those responses were 
also accompanied by remarks about changes in understanding of particular 
mathematical content. An example is: 

(Interview) Mathematics has always been ‘a stone in my shoe’. I always had difficulties 
in understanding it. To give you an idea, for the first time I am understanding decimals 
and fractions and the relationship between them. They were never taught to me in that 
way. I am becoming so happy that even at my age [mature ST probably in the age range 
of 35 - 40] I decided that I am going to learn more mathematics. There are many things I 
have learned later in life and mathematics is one of them. 

Such responses tended to show that part of STs’ dislike for mathematics was related 
to their instrumental understanding. Therefore, the strategic actions to improve their 
relational understanding were considered helpful in improving their liking for 
mathematics. The majority of STs also said that they had liked the idea of using 
children’s activities: “I liked to ‘see’ the content as a child. The attempt to place 
yourself in his/her place and to try ‘seeing’ how (s)he thinks, how (s)he would better 
understand”. Having said all that, it does not mean that there were not problems 
connected to the idea of attempting to improve STs’ liking for mathematics as a by-
product of the effort to improve their relational understanding of the subject. For 
some STs the attempts to achieve affective outcomes were considered incompatible 
with the attempts to maximise cognitive outcomes. 
Many STs in the first semester (n1 = 22) and some in the second semester (n2 = 18) 
said that their liking for mathematics had increased. The other STs said that their 
liking continued the same (n1 = 8 and n2 = 22). Although the teaching programme 
was improved from the first to the second semester, the number of STs who said that 
their liking for mathematics had increased through the MTCC was smaller in the 
second semester. This result was influenced by the decision to ask the second 
semester STs to record some of their practical activities. I was trying to help STs 
acquire relational understanding at a more reflective and formal level. According to 
Ball (1990), this “includes the ability to talk about and model concepts and 
procedures” (p. 458). Recording the practical activities was thought to encourage 
active learning and STs’ reflections on their previous actions with concrete materials. 
However, a ST made a comparison between the practical activities and their 
recording which seems to demonstrate how some STs may have contrasted the 
children' s informal activities with the few teachers’ activities included in the 
programme: 

(Interview) I like the manipulations of concrete materials, but I do not like the reports. I 
find them boring. [Teacher: Why?] You are dealing with something light that comes 
spontaneously and then suddenly you have to record these manipulations. It gives you 
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the impression that we are returning to the traditional way of working. 

There were also positive remarks about the reports (n2 = 8). However, there were 
more negative (n2 = 10) than positive remarks. Yet it was not appropriate to abandon 
the reports because soon many STs would be teaching primary school children and 
needed to acquire a strong relational understanding to teach mathematics to the 
highest level expected of students doing that stage of schooling (Bennett, 1993). 
Another problem was the number of STs enrolled in each class (42 in the first 
semester and 44 STs in the second semester). Several STs complained about the class 
size and explained that the number of STs did not allow me to provide the necessary 
amount of individual attention. These STs presented moderate to severe difficulties in 
re-learning the primary school mathematical content in a single semester. They 
thought that a slower pace and a smaller class would be more appropriate for them. 

CONCLUSIONS
The practical activities were time consuming and hard work with large classes, but 
using children’s activities proved to be an appropriate strategy to attempt improving 
STs’ understanding of the mathematics since the majority of STs said, and many 
indicated in the post-tests, that their understanding had improved. The majority of 
STs also said that they had enjoyed using children’s activities. The use of several 
mathematical representations, and helping students to construct relationships among 
concepts and operations, are important strategies in the teaching of mathematics. So 
the strategic actions and teaching activities did not require any changes in nature; 
mainly quantitative and timing adjustments were made for the third and subsequent 
semesters in order to maximise STs’ learning during a single semester. More practical 
and written activities were included for the representations and content that proved to 
be more difficult for the STs in previous semesters. For this reason certain activities 
had to be excluded from the programme. 
Some STs suggested increasing the teaching time for rational numbers. In the third 
and subsequent semesters, the activities for rational numbers concepts and operations 
were started at the beginning of the semester and they continued until the last day of 
each semester. The number of activities about operations with natural numbers alone 
was reduced, but there were still many activities about operations with rational 
numbers which included a natural number part. Through operations with mixed 
numbers and decimals (e.g., 35¾+26¼ or 24.75-12.53) the STs experienced further 
activities related to operations with natural numbers and had the opportunity to make 
important relationships between operations with natural numbers and rational 
numbers. Yet taking into consideration the difficulties presented by some STs and the 
time necessary to a practical approach to teaching with big classes, a more 
appropriate solution would be to offer the MTCC over two semesters with a total of 
160 hours as it was suggested by many STs. However, increasing teaching time 
involves institutional changes. I have been trying to make these changes, but until the 
time of completion of this paper the problem has not been solved. 
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Teaching time was the most important constraint affecting STs’ learning and attitudes 
in this study. Changing STs' attitudes proved to be a slow process which required 
more than one semester of the MTCC. Philippou and Christou (1998)’s intervention 
involved three course components, but they argue that even more time and 
challenging experiences are needed to change STs’ attitudes that were developed over 
many years at school. Without deeper understanding of mathematics STs will 
probably teach mathematics as a set of disconnected rules and algorithms and 
disseminate even more negative attitudes to the subject among primary school 
children. One of the most relevant results of the present study was the knowledge I 
gained about the time needed to help primary school STs acquire a strong 
understanding of most of the mathematics they will teach. 
I could have focussed my teaching on teacher development by adapting content, 
assessment, principles and aims, but I decided to focus on my social responsibility to 
primary school children. Ball and McDiarmid (1990) cite the results of two studies 
that show that curriculum content may be transformed, narrowed or avoided by 
negotiations made between students and teachers. I could certainly have made my life 
easier by narrowing or avoiding certain content and the more formal activities in 
response to STs’ complaints. Such negotiations were thought to be socially 
irresponsible because they would affect STs’ learning of mathematics and of 
pedagogy and this, in turn, could limit their future students’ mathematical learning. 
McDiarmid and Wilson (1991) poses a question connected to this issue and which I 
think has relevant connections to idea of democracy in schools: 

Waiting for teachers to develop conceptual understandings of the subject matter from 
teaching it seems both haphazard and callous: Who decides whose children get 
shortchanged while waiting for teachers to develop understandings of the subject they 
teach?” (p. 102). 

Darling-Hammond (1996) seems to have some sort of answer to this question. Poorly 
prepared teachers are “assigned disproportionately to schools and classrooms serving 
the most educationally vulnerable children” (p. 6). According to Darling-Hammond, 
students’ right to learn is directly connected to their teachers’ opportunities to learn 
what is needed to teach well. Without a good preparation, teachers are not able to 
provide effective learning experiences to socially disadvantaged students. 
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ABSTRACT: This paper compares the way lessons on systems of linear equations 
unfold in a classroom in the Negev region of Israel  with the way they unfold in a 
Shanghai and Hong Kong classroom.  Lessons are viewed as temporal entities 
describable not only by the nexus of topics they contain but also by how they flow in 
time.  In this light, the lessons in the classroom studied by the authors contrasts 
strongly with the Shanghai and Hong Kong classroom, the former having a turbulent 
flow and latter a smooth directed flow.  The result is consistent with previous 
recognized cultural differences in classroom practice and has implications for the 
bases of international comparisons. 

INTRODUCTION
International studies such as the TIMSS have taught us, among other things, that 
international comparisons are devilishly difficult to make (e.g. Keitel & Kilpatrick, 
1999).  Even where curricular complexities may be put aside and a common subject 
agreed upon, Stigler and Hiebert (1999) and others have shown that lesson structure 
and presentation can vary greatly from country to country, culture to culture.  The 
present paper adduces further evidence for this fact and underlines a crucial aspect of 
the presentation of mathematical subjects to be taken into account in international 
studies, namely, the manner in which lessons unfold in time.
How mathematics lessons unfold can be described in two complementary ways.  One 
way is according to their logic or rationale. This rationale is determined partly by 
mathematics itself and partly by teachers’ pedagogical styles.  But mathematics 
lessons also unfold with a certain pace; they have a flow, which one may well 
describe with musical terms such as rhythm and tempo.  The logical unfolding of 
lessons corresponds, roughly, to what has been called topogenesis, and the actual 
flow of lessons to chronogenesis (Chevallard, 1985; Brousseau 1999).  The different 
ways time enters into the teaching and learning of mathematics have been studied 
broadly by Arzarello, Bartolini Bussi, & Robutti (2002).  Some of these ways, such 
as the ‘stream of discussion’ (Bertolini Bussi, 1992) and Brousseau’s ‘didactic 
memory’, are examples of ‘external time’, that is, they are measurable by an 
observer’s clock, while others are examples of  ‘internal time’, which is “primarily 
individual and unconscious, although its features may be inferred from external 
clues” (Arzello et al., 2002, p. 526).  In this paper, we shall be concerned only with 
external time, though we consider internal time no less important.  We shall examine, 
in particular, how algebra lessons on systems of linear equations flow in time and 
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how their pedagogical rationale unfolds. The lessons, which are the focus of this 
paper, were observed in an eighth grade classroom in the city of Beer Sheva in the 
southern region of Israel. These are compared with lessons in Shanghai and Hong 
Kong on the same subject matter, as described by Mok, Leung, Lopez-Real, and 
Marton (Mok et al., 2002). 
The comparison of our findings with those of Mok, et al. showed that while there 
were some differences between the lessons in Hong Kong and Shanghai, those 
lessons were far more comparable with one another than they were with the lessons 
we observed in Beer Sheva.  The latter differed strikingly from either Hong Kong or 
Shanghai.  The most prominent divergence of the lessons we studied from those 
studied by Mok et al. was in the way the very idea of a system of linear equations in 
two unknowns was developed. And it was here that thinking in terms of flow and 
time proved useful, as we shall see.
RESEARCH SETTING 
The research setting for the results to be presented here, both ours and those of Mok, 
et al., is the Learners’ Perspective Study (LPS), which is an international effort 
involving nine countries (Clarke, 1998; Amit & Fried, 2002).  The project arose out 
of the video study connected with the Third International Mathematics and Science 
Study (TIMSS) in which eighth-grade mathematics classes in Japan, Germany and 
the USA were videotaped and analyzed to identify national norms for teaching 
practice, norms that might account for achievement scores attained in each country.  
The LPS expands on the work done in the TIMSS study (which exclusively examined 
teachers and only one lesson per teacher) by focusing on student actions within the 
context of whole-class mathematics practice and by adopting a methodology whereby 
student reconstructions and reflections are considered in a substantial number of 
videotaped mathematics lessons.
As specified in Clark (1998), classroom sessions were videotaped using an integrated 
system of three video cameras: one viewing the class as a whole, one on the teacher, 
and one on a “focus group” of two or three students.  In general, every lesson over the 
course of three weeks was videotaped, that is, a period comprising fifteen consecutive 
lessons.  The extended videotaping period allowed every student at one point of 
another to be a member of a focus group.  Needless to say, video technology with its 
built-in capacity for measuring time proved an invaluable aid in observing how 
lessons unfold.
The researchers were present in every lesson, took field notes, collected relevant class 
material, and conducted interviews with each student focus group.  Teachers were 
interviewed once a week.  Although a basic set of questions was constructed 
beforehand, in practice, the interview protocol was kept flexible so that particular 
classroom events could be pursued.  In this respect, our methodology was along the 
lines of Ginsburg (1997); this methodology was chosen because the overall goal of 
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LPS is not so much to test hypothesized student practices as it is to discover them in 
the first place.
The specific case that formed the basis for this paper was a sequence of 15 lessons on 
systems of linear equations taught by a dedicated and experienced teacher, whom we 
shall call Danit.  Danit teaches in a comprehensive high school.  Her 8th grade class is 
heterogeneous and comprises 38 students, mostly native-born Israelis, but also new 
immigrants from the former Soviet Union and one new immigrant from Ethiopia. 
DANIT’S LESSONS OVER LONG AND SHORT TIME SCALES  
Danit developed the idea of a system of equations and its solution over the course of 
several lessons.  These lessons, to the point at which the algebraic solution of systems 
was first introduced, unfolded as follows: 
Lesson 1: Danit went over the notion of a number line, the coordinate system, and the 
task of plotting individual points.   
Lessons 2-3: Equations in two unknowns were introduced; it was highlighted that 
such equations generally have an infinite number of solutions.   
Lesson 4-5: Danit returned to the coordinate system; the students plotted the solutions 
of linear equations with her guidance, and the observation was made that solutions of 
such equations indeed lie along lines; the lines were described by Danit as an 
equation “in a different language.” In the course of this discussion, it is important to 
remark, another representation was subtly brought into play, a table of values.   
Lesson 6: The graphic solution of a system of equations was demonstrated—and it 
was here that Danit first used the phrase ‘system of equations’; here too, she 
considered the meaning of a solution of a system of equations.   
Lesson 7: Still concentrating on the graphic solution, Danit showed that there were 
cases in which the system can have an infinite number of solutions or no solutions.  
Lesson 8: The limits of the graphic solution method were discussed, leading the way 
to purely algebraic solutions to systems of equations.   
In this long sequence of lessons, one observes that the lessons shift from graphical 
representations to algebraic representations, back to graphical representations, back to 
algebraic representations.  The back and forth movement is not only characteristic of 
many lessons taken together: in almost fractal fashion, it is also evident within the 
details of the lessons themselves.  Consider the following segment from lessons 4-5 
(these were taught without a break—in itself a point worth noting).  In the preceding 
lesson, the students had discussed equations in two unknowns and had begun to see 
that they have an infinite number of solutions.  Now, in this lesson, Danit makes the 
transition, which refers directly at the very start to a shift in the form of 
representation:

T: [min. 35][Writing the equation x+y=6 on the blackboard] Who is willing to tell me 
what is written here in Hebrew?  I want a translation into Hebrew, not just “x plus y 
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equals six”!...You’ve seen this [i.e. an equation like this] in your book, and you know to 
do with them [referring to the exercises given in the last lesson]—now translate it into 
Hebrew.
S1: Two unknowns  you have to find them 
T: Ok, but, a little more…[continues to prod the students] 
S2: [min. 36] One unknown and another unknown equals six 
T: Good, but more, even without the word ‘unknown’. 
S3: Something and something equals six 
…
T: [writes: ‘Two numbers whose sum is six’] Find me two numbers whose sum is six.  
In the language of algebra, we say, ‘x  plus y equals six’. [min. 37]  Today, we’re going 
to learn to translate this into another language; we’re going to sketch this, that is, what is 
written here, x+y=6, I don’t have write in the language of algebra, I don’t have to say it 
in words:  I can sketch it. 

For the next ten minutes, approximately, Danit guides the class through a point-wise 
construction of the graph of line given by x+y=6, including the construction of a table 
of values.  Finally, she observes: 

T: …[min. 47] What we have obtained in fact is a straight line in the coordinate 
system that represents this equation.  Come, see why.  The line stands in place of saying 
x and y equals 6 … 

Although Danit says the line stands in place of saying ‘x and y equals 6’, the equation 
is still very much present in the ensuing dialogue.  Indeed, before moving ahead to 
the graphic translation, she first moved back to a verbal translation of the equation 
calling to mind the previous lesson.  Moreover, as the dialogue continued other ideas 
from the previous lesson returned, in particular, that equations in two unknowns 
characteristically have an infinite number of solutions and that that can be shown by 
choosing an arbitrary value for x and showing that a value of y can be found.:

 T: [The line stands in place of saying x and y equals 6]  Now, let’s see what happens 
to a point, any point that I happen to pick on the line.  Come, I pick at random this point 
over here.  What is the x of this point? [points at the board] 
Ss [several students together]:  7 
T: What is y? 
Ss: -1 
T:   7 plus -1 equals 6 [note: this is what she referred to before as the language of 
algebra] [min. 48] How many solutions are there to this equation?...How many points are 
there on this line? 
S1: 6 [there are, in fact, 6 marked points on the line drawn on the board] 
S2: 5 
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S3: 6 
S4: Infinitely many 
T: Infinitely many! 

Thus, in this ten minute segment, the lesson has shifted from an algebraic 
representation of an equation in two unknowns to a verbal representation to a graphic 
representation back to an algebraic representation, forward again to the graphical 
representation, and then back to the algebraic ideas of the previous lessons.   
SHANGHAI AND HONG KONG 
The Shanghai lesson, as described by Mok, et al. (2002) develops the idea of a 
system of equations in one lesson lasting approximately 42 minutes. It began with a 
real-life problem concerning the purchase of two kinds of stamps, a constraint was 
then added, and, by doing so, a system of equations was produced.  After 10 minutes 
of exploratory discussion, the teacher presented a definition in terms of the example.  
The teacher then lead the class into a purely mathematical context and introduces the 
idea of a linear system in a purely algebraic fashion.  Several examples were given to 
reinforce the definition; the lesson returned to the original word problem, and again 
in terms of the problem what a solution of a system was defined.  Finally the students 
were given exercises designed to apply the definitions.   
In the Hong Kong lesson, which was somewhat shorter than the Shanghai lesson 
(approximately 35 minutes), the teacher began with a whole class discussion 
arrangement to review the idea of an equation in one unknown.  This discussion was 
the vehicle for reviewing the notions of ‘unknown’, ‘linear’, ‘solution’.  Having done 
this, the teacher could then state the topic of the day, namely ‘simultaneous equations 
in two unknowns’.  From here, the Hong Kong lesson, like the Shanghai lesson, 
moved on to a motivating word problem—this time, a problem concerning rabbits 
and chickens.  Again, as in the Shanghai lesson, the definition of a system was given 
in terms of the word problem.  The lesson concluded with a shift to a pure 
mathematics context in the form of ‘worksheet tasks’ asking the students to solve 
systems of equations.   
Although Mok, et al. (2002) emphasize the differences between the Hong Kong 
lesson and Shanghai lesson, we were struck by their similarity.  They both have a 
clear structure: a motivating example, central definitions derived from the example, a 
return to the motivating example (explicitly, in the Shanghai lesson and hinted in the 
Hong Kong lesson), and exercises that reinforce the definitions.  Moreover, this 
structure is paced to begin and be completed in exactly one lesson. 
DISCUSSION 
In the Hong Kong and Shanghai classroom, one moved in a very paced manner, in 
one lesson, from a motivating example to the definition of system of equations and 
the solution of a system of equations and then to a summation by means of exercises 
applying the new definitions; in the classroom we observed, one moved in a slow 



www.manaraa.com

2–38  PME28 – 2004

meandering fashion, over the course of several lessons, through different 
representations first of equations in two unknowns, then of systems of equations, 
leading finally to the algebraic solution of a system.   
The way Danit’s lessons move back and forth between different representations of 
equations on such a small scale and, simultaneously, on the large scale makes 
Seeger’s (as cited in Arzello et al., 2002) comparison of such classroom discussions 
to turbulent flow (as opposed to laminar flow) particularly apt. It not only describes 
the flow of the lesson, it also gives some hint of what the pedagogical effect of such 
flow is.  For in turbulent flow a fluid is constantly being mixed: turbulent lessons are 
not confused lessons, but ones in which ideas are continually being brought forward 
and back and compared and contrasted.  It is for this reason, we surmise, that Danit, 
when she finally arrived to the notion of a system of equations, did not see the need 
to provide an explicit definition: the line representations of the equations and the 
algebraic equations were continually being mixed, so that the intuitive fact of two 
lines meeting at a point was immediately being compared to the simultaneous 
solution of two linear equations. 
The turbulent flow of the lessons in the Beer Sheva classroom contrasts strongly with 
smooth directed flow of both the Shanghai and Hong Kong classrooms.  The 
difference is very likely a cultural one.  Stigler and Hiebert (1999) indicated a similar 
difference between Japanese and American lessons.  In Japanese schools, a lesson is 
considered a perfect whole telling one coherent story.  For this reason, a lesson in 
Japan is not to be disturbed in the middle, and no part of it is to be missed.  In 
American schools, lessons form a series of more or less independent modules: an 
interruption here or there will not, therefore, ruin the lessons (Stigler & Hiebert, 
1999, pp.95-96).  Indeed, in our basic set of interview questions, one question asked 
whether students viewed each mathematics lesson as a single story or as a chapter in 
an ongoing series, like a ‘soap-opera’.  In almost every case, the students answered 
“it is more like a ‘soap-opera’.”   
Accepting the fact of this turbulent flow in the Beer Sheva lessons, one should ask, of 
course, whether the students benefit from it.  Should we, rather, emulate the laminar 
flow of the Shanghai and Hong Kong lessons? At this point, it is hard to say.  We 
were disturbed to find that when, in the interviews, we asked Danit’s students what 
they understood by ‘a system of equations’, they had only a vague notion—more than 
one student identified the system of equation with the coordinate system—even 
though the same students could often find the solutions to systems without too much 
trouble.  But, to return to musical analogies, it may that in such lessons, such 
misapprehensions are mere dissonances to be resolved later.
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SOLVERS? 
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Efforts to develop a mathematics curriculum that meets the needs of a modern society 
are reflected in reform recommendations across the developed world. A common 
requirement is for students to understand the calculation procedures they are taught 
and to develop ‘number sense’. This paper will analyse students’ strategies for 
calculating in the USA, England and the Netherlands and consider the way these 
relate to curriculum priorities.

Traditional approaches have emphasised a place value approach to calculations, often 
modelled on base ten materials, with students taught a standard vertical algorithm. 
Recent developments emphasise a more thinking approach based on ‘number sense’. 
In the US Standards ‘understanding number and operations, developing number 
sense, and gaining fluency in arithmetic computation form the core of mathematics’ 
in the elementary grades’ (NCTM, 2003:1). The National Numeracy Strategy in 
England (DfEE, 1998) proposes more emphasis on mental strategies with delayed 
introduction of standard algorithms. Students are expected ‘to understand’ the four 
operations and relationships among them and to ‘use mental methods if the 
calculations are suitable’ (DfEE, 1999:69). In the Netherlands, the Realistic 
Mathematics approach emphasises the development of ‘models’ rooted in concrete 
situations. Written methods are developed with progressively increasing efficiency 
using unpartitioned numbers (van den Heuvel Panhuizen, 2001). Implementing 
change is not straightforward and national proposals are meet with different 
responses by teachers, educationalists, politicians and the public at large. In the USA, 
‘math wars’ reflect controversies in attempts to change priorities. England and the 
Netherlands are also subject to different initiatives and although aims are compatible 
the routes to change involve contrasting practices (Beishuizen and Anghileri, 1998, 
Anghileri, 2001).

The operation of division 
Two distinct procedures for written calculations relate to the partitive and quotitive 
models for division (Greer, 1992): repeated subtraction of the divisor (becoming 
more efficient by judicious choice of ‘chunks’ that are multiples of the divisor) and 
sharing, based on a place value partitioning of the number to be divided (used 
efficiently in the traditional algorithm). The traditional algorithm takes two forms: 
‘short division’ in which the calculation is completed in a single line and ‘long 
division’ involving sub-procedures recorded in a vertical format. In England, written 
division is initially restricted to a single digit divisor with ‘informal methods of 
dividing by a two-digit divisor’ (DfEE, 1999). In the Netherlands larger numbers 
(both divisor and dividend) are introduced to justify the need for a written strategy 
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and a standard procedure based on repeated subtraction is taught with efficiency 
gained through the subtraction of larger ‘chunks’ (Beishuizen and Anghileri, 1998).. 
In the USA, the traditional algorithm is introduced for one- and two-digit divisors. 
Students’ Strategies in England, the Netherlands and the USA 
Students written strategies for ten division problems were collected in three countries. 
English and Dutch cohorts were tested in June of year 5/group 6 when ages were 
similar (English: mean = 10.21 yrs, s.d. = 0.28; Dutch: mean = 10.32 yrs, s.d. = 0.44).  
In the USA testing took place later when the mean age of students was 10.75 yrs with 
s.d. 0.43. These age distributions reflect national policies; in England students’ ages 
determine their class and it is rare to find any variation (Prais 1997). In the 
Netherlands the age range in many classes will be wider, reflecting a national policy 
for accelerating able students and repeating years for those who do not reach the 
required standard. In the US a policy of repeating years also operates. 
The study involved students (n=647) from 23 schools in and around small university 
cities: 10 high achieving English (n=275) schools, 10 Dutch schools implementing 
curriculum change (n=259) and 3 schools in the USA (n=113). Time constrained the 
sample to six classes in one state in the USA in one private school, one selective and 
one non-selective public school. Solutions were collected in individual workbooks 
using five word problems that varied in their numerical content and their semantic 
structure, together with five parallel ‘bare’ problems. The same protocol was used in 
all classes. Using the students written records, codes for the strategies were 
established (Anghileri, Beishuizen, & van Putten, 2002, van Putten 2002).  

RESULTS
Solutions were predominantly those taught in each country but the frequency of use 
varied. In England the short division algorithm was used in 53% of all attempted 
questions, in the US the long division algorithm was used in 81% of all attempts and 
in the Netherlands the repeated subtraction procedure was used in 60%. The US and 
English algorithms allowed for no flexibility but the Dutch repeated subtraction 
method allowed students to choose the number facts to use and could be completed at 
different levels of efficiency. Other strategies used were generally low-level 
approaches such as tallying or repeated addition or subtraction.   

Single digit divisors 
A pair of items involved exact division of a two-digit number (one context and one 
bare) and another pair involved a four-digit dividend and a remainder:

�� q1:    98 flowers are bundled in bunches of 7. How many bunches can be made?  
�� q6:    96�6
�� q5:    1542 apples are divided among 5 shopkeepers. How many apples will each shopkeeper 

get? How many apples will be left?  
�� q10:   1256�6

Use of the taught algorithms was highest in these questions and percentage use 
(whether correct or incorrect) is given in Table 1.
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algorithm short division  repeated subtraction long division  
 q1 q6 q5 q10 q1 q6 q5 q10 q1  q6 q5 q10
England 66 66 70 68         
Netherland     76 74 72 72     
USA         92 91 92 87 

Table 1: Percentage use of the different algorithms 

The English cohort showed more diversity in the strategies used for these questions 
with about a quarter of attempts using informal approaches including tallying and 
chunking using known number facts. The US students used the algorithm almost 
exclusively. Facilities for these four questions are shown in Table 2. 

 q1 q6 q5 q10 
England 53 53 35 23 
Netherlands 84 81 63 56 
USA 96 85 74 69 

Table 2: Overall success rates for each question (percentage).  

English students did least well with particular difficulty with 4-digit dividends. The 
Dutch, with their repeated subtraction procedure were more successful. The US 
success in these four questions reflects extremely high performances in the private 
school (99% correct overall in these items) and the selective school (91% correct 
overall in these 4 items) while in the non-selective public school students’ success 
was more modest at 89%, 47%, 47% and 42% respectively for these questions.

Two digit divisors 
Two pairs of questions involved two-digit divisors with numbers chosen to encourage 
informal approaches:

�� q2:      64 pencils have to be packed in boxes of 16. How many boxes will be needed?  
�� q7:       84�14
�� q3:     432 children have to be transported by 15 seater buses. How many buses will be 

needed? 
�� q8:     538�15

Informal strategies were evident in some English and Dutch solutions but rarely in the 
American students’ work. The nationally taught algorithms (English short division; 
Dutch repeated subtraction algorithm; US long division algorithm) were again most 
commonly attempted and the following table (Table 3) shows the percentage of items 
correctly solved compared with the percentage correctly solved using the algorithms in 
brackets.
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 q2 q7 q3 q8 
England 48 (8) 55 (14) 23 (15) 13 (8) 
Netherlands 75 (50) 76 (40) 53 (45) 53 (43) 
USA 73 (55) 81 (68) 36 (35) 64 (64) 
Table 3: Facilities (percentage)  for each question (success using national algorithm).  

Success on these four questions was most limited in the English classes, not least 
because the short division algorithm is not easily adapted for 2-digit divisors and 
informal methods were widely used although many students (9%) omitted these 
problems. In question 3 many US students gave as their answer the result of their 
calculation and not the number of coaches required.  
Due to the nature of the sample, results for the US classes are interesting when 

comparison is made between the highest and lowest scoring classes (Table 4). 

 q2 q7 q3 q8 
non selective public school (n=19) 26 11 0 (*10) 11 
selective private school (n=19) 100 100 74 (*89) 89 
*includes correct calculation but wrong answer

Table 4: Facilities of two US classes for questions involving two-digit divisors 

Many wrong answers in the non-selective public school class were due to choice of 
the wrong operation in the context questions (40%).  

Division by ten 
Two of the items involved division by ten with a remainder: 

�� q4:   604 blocks are laid down in rows of 10. How many rows will there be?  
�� q9:      802�10

The English students used a variety of strategies with mental methods (an answer 
given but no working shown) being the most common (34% and 37% respectively). 
The context question 4 was tackled by 28% using the algorithm while the non-context 
question was tackled this way by 40%. The Dutch students also used a variety of 
methods with less difference between the context and non-context questions (54% 
and 50% use respectively) in the use of the algorithm. A bigger difference occurred 
with a mental strategy used by 28% and 33% of the students. 
As in the other items the US students predominantly used the algorithm in 72% of 
attempts at question 4 (54% correct) and in 81% of attempts at question 9 (72% 
correct) and a mental strategy was used by only 8%. None of the US students 
curtailed the algorithm in any way and full working was shown throughout.
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Discussion
It has been proposed that arithmetic instruction is not about designing ways for 
students to develop facility in calculation, albeit meaningfully, it is about fostering 
students’ underlying arithmetical conceptions (Steffe and Kieren, 1994). Findings of 
this study suggest this objective is not greatly evident in the written methods for 
division, and students’ approaches in the different countries are starkly contrasted. 
The US students gained the highest scores overall (72% correct) but since the cohorts 
from different countries in this study are not directly comparable it is not possible to 
conclude that this provides the key to successful division computation. Success rates 
for the non-selective class (Table 4) suggests that the taught algorithm presents 
considerable difficulties for many students. Facilities are comparable with the English 
cohort who used the algorithm in 49% of all attempts (Table 5). 

 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 
US non selective 89 26 0 26 47 47 11 11 47 42 
mean England 76 48 23 46 38 69 54 13 45 22 

Table 5: Comparison of facilities (%) in one US class with all English students

The US students are well disciplined with the algorithm used extensively but there 
was no flexibility (for example no curtailed procedures for division by 10) and there 
was little evidence of number sense (for example few mental approaches and lack of
reference back to a meaningful solution in context). The US students found many 
bare question, for example division by ten, easier than the context problem, 
suggesting that they focus on formal calculations more than problem solving.  
Where English and Dutch classes can be more readily compared the results show 
superior mastery with the Dutch approach (see Anghileri et al., 2002). Dutch students 
predominantly (60%) used ‘chunking’ with flexibility in the degree of efficiency 
involved. This algorithm allows individuals to make choices about the number facts 
they use, thus retaining some ownership of the method rather than replicating a 
standard procedure.  It is suggested that by the time Dutch students are the age of the 
US students they will have achieved equal or greater success rates although this can 
only be speculation. 
English students used a greater diversity of methods and this fits with the objective of 
introducing flexibility but appears to be at the expense of competence in calculating. 
English students used a mental method most (36%) of all three countries for division 
by ten and were most effective (22% correct) in use of this strategy for these 
questions.  Correct solutions to other questions sometimes (7%) showed inventive 
strategies for division by a 2-digit divisor which had not been taught, for example  
for 432�15 a solution given was  30�15=450    450�15=435    Answer 28r12. Overall 
English students arrived at correct solutions to 25% of all items using the algorithm 
but a further 19% using other methods. More diversity in approach can lead to some 
good strategies but many students are unable to develop their own informal methods 
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for problems such as 64�16.  At the other extreme it may be questioned whether it is 
desirable for US students to persist in a rigorous and completed procedure where a 
less formal strategy would be more efficient and reflect the number sense that is 
desired. The progressive nature of the Dutch method involves flexibility as it allows 
students to use the number facts they know without being constrained to the unique 
steps in the traditional algorithms. With the desire to encourage number sense it is 
important to question the priority that is given to teaching the traditional algorithm 
for division, but competence in calculating does not appear to develop where students 
are left to develop their own methods. A balance needs to be established between 
flexibility with use of number sense and accuracy in computation. The Dutch 
approach appears to go furthest in developing an approach that combines both. 
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A STATEMENT, THE CONTRAPOSITIVE AND THE INVERSE: 
INTUITION AND ARGUMENTATION 
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The equivalence between a statement and its contrapositive is so obvious for an 
expert that, usually, he does not need any explanation. In this paper, we shall 
examine the argumentations which students produce in order to justify a statement 
that, in their opinion, is equivalent to a given statement. We shall observe that the 
most common argumentations come out from the effort to adjust the proof of the first 
statement to the second one. Analysing these argumentations, it will emerge that for 
the students the (false) equivalence between a statement and its inverse is intuitive 
and the (true) equivalence between a statement and its contrapositive is not intuitive.

INTRODUCTION
In this paper, we investigate the equivalence between a statement and its 
contrapositive from cognitive and didactical points of view. Given a statement pq,
the contrapositive is the statement q  p,  the inverse is p  q and the 
converse is q p. A statement and the contrapositive are equivalent, then, if we have 
proved the statement, the contrapositive is proved too. A statement and the inverse 
are not equivalent; it happens that a statement is true but the inverse is false; in the 
same way a statement and the converse are not equivalent.  
Usually, in school practice, teachers and text-books do not pay much attention to the 
equivalence between p q e q  p, probably because it is considered to be 
obvious: it is common opinion that this equivalence is a natural way of thinking that 
can be spontaneously used in mathematics. For example, in a discussion about proof 
from didactical point of view, an university teacher stated that "the proof by 
contradiction is based on the fact that p q and qp say the same thing". It 
was so obvious for him that he did not need any explanation. Moreover, the link 
between the two statements was so strong for him that he did not seem to be talking 
about a logic equivalence: the two statements "say the same thing", as they were two 
different forms of the same statement.  
On the other side, some researches in education dealt with this equivalence and 
showed that it seems to be content dependent and, in some cases, to be not so 
obvious. For a rich bibliography, see Fischbein (1987, pp. 72-81).
Moreover, some researches in mathematics education have pointed out some 
epistemological, cognitive and didactical obstacles for students when they have to 
understand or to produce proofs by contradiction, that is proofs whose validity is 
based on the equivalence between a statement and the contrapositive. See, for 
example, Wu Yu et al. (2003), Antonini (2003a, 2003b, 2001), Bernardi (2002),  Reid 
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(1998), Epp (1998), Thompson (1996), Barbin (1988), Leron (1985), Freudenthal 
(1973).
The aim of this work is to investigate the argumentations proposed by secondary 
school students (grade 10) when they justify the validity of the contrapositive, the 
converse and the inverse of a given statement. In the theoretical framework on 
intuitions exposed by Fischbein (1987, 1982), analysing the argumentations, we can 
examine and discuss the intuitiveness of these equivalences.

THEORETICAL FRAMEWORK 
This study is based on the theoretical framework on intuitions exposed by Fischbein 
(1987, 1982). In this work, an intuition is "a representation, an explanation or an 
interpretation directly accepted by us as something natural, self-evident, intrinsically 
meaningful, like a simple, given fact" (Fischbein, 1982, p.10).
Moreover, it is very interesting the following classification: 

"We have, then, three different kinds of convictions. One is the formal extrinsic 
type of conviction indirectly imposed by a formal (sometimes a purely symbolical) 
argumentation. The second is the empirical inductive form of conviction derived 
from a multitude of practical findings which support the respective conclusion. The 
third is the intuitive intrinsic type of conviction, directly imposed by the structure 
of the situation itself" (Fischbein, 1982, p.11).  

If one knows something intuitively, "he will not feel the need to add something which 
could complete or clarify the notion (for instance an explanation, a definition, etc.)"
(Fischbein, 1982, p.10). For example, what the university teacher said about proof by 
contradiction (see above) is, for him, “something natural, self-evident, intrinsically 
meaningful, like a simple, given fact", i.e. an intuition. 
From the mathematical point of view, the proofs of the equivalence between a 
statement and the contrapositive are based on the principle of excluded middle and 
they can be formalized in the logic of proposition, for example through the truth 
tables. We underline that these are meta-theoretical proofs: the object of these proofs 
is the validity of a statement in relation to the validity of another statement.  
Then, it will very interesting to observe the explanations that students propose to 
support or to reject the equivalence between a statement, the contrapositive or the 
inverse or the converse. 
We expect the students not to produce meta-theoretical argumentations. We rather 
expect them to propose specific argumentations that depend on the given statement. 
Through the analysis of these argumentations we shall investigate the intuitiveness of 
the equivalence between a statement and the contrapositive and the non equivalence 
between a statement, the inverse and the converse.  



www.manaraa.com

PME28 – 2004  2–49

METHODOLOGY
This work is a part of a wider study about proof by contradiction exposed in Antonini 
(2003a) and then is based on the methodology of that research. In particular, for the 
research explained here, we observed 46 secondary school students (grade 10) 
through discussions, reports written by the students about the discussions, a test, and 
a report in which students had to justify their answers in the test. In this paper, we 
describe and analyse what emerged from the discussions and from the reports about 
two particular mathematical problems. To make the exposition clear, we discuss the 
results according to the mathematical problem they refer to.

THE PROBLEM OF THE PARALLEL LINES 
The episode is part of the regular didactical activity in two classes. The students have 
just proved the following statement (that we call the main statement):
Main statement: Let r and s be two intersecting lines and let t be a transversal. Then 
the alternate interior angles are different.

The proof proposed by the students is based 
on the theorem of the exterior angle: in a 
triangle an exterior angle is bigger than 
every non adjacent angle. In this case, in the 
triangle ABP, we can say that and then 
                    

After the proof, the teacher asked the students: can you formulate a statement which 
contains parallel lines in the hypothesis or in the thesis, and which does not need to 
be proved because we already know that it is true from the validity of the main 
statement?
During the discussion, students proposed two statements, the inverse and the 
contrapositive:
inverse: If r is parallel to s then the two alternate interior angles are equal
contrapositive: If the alternate interior angles are equal, then r is parallel to s.
At home, the students wrote a report in which they exposed their opinions. It emerged 
that 20% of the students chose the contrapositive, 20% of the students chose the 
inverse, 50% of the students chose both the statements and 10% of the students 
completely misunderstood the task or the statement.  
The most common argumentations to justify the statement come out from the effort to 
adjust the proof of the main statement to the inverse or to the contrapositive. The 
students, instead of producing meta-theoretical argumentations, proposed 
argumentations based on the same theoretical reference (that is the exterior angle 
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theorem) of the proof of the main statement. By this kind of argumentation students 
could support the validity of both the inverse and the contrapositive: these 
argumentations do not allow to identify the statement equivalent to the given one. For 
example, Fabiana, after the proof of the main statement, writes:   

“In this way, using the exterior angle theorem, we can prove and be sure that two 
intersecting lines and a transversal make a triangle and the two alternate interior angles 
are different. 
Probably, to prove that two parallel lines and a transversal [make] two equal alternate 
interior angles, we have to think in the same way, using the ideas and the theorems 
previously proved.” 

Fabiana thinks that, to prove the inverse, "we have to think in the same way". Then, 
she explains what she means in the following way: 

“We can prove the exterior angle theorem, that is that  and then that  just when 
we have a triangle formed by the intersecting lines. Then, when the lines are parallel, 
they cannot make a triangle because they do not intersect each other and then we cannot 
apply the theorem and then we cannot prove that  and then, if the two lines are 
parallel, =.”

In the same way, Fabiana supports the contrapositive using the exterior angle 
theorem: 

“If I have in the hypothesis that = and in the thesis that r//s I can reverse the argument 
because I know that = and then  is not bigger than  then I can deduce that the lines 
do not make a triangle and then I can not apply the exterior angle theorem.” 

Explanations like this are very common. We can identify two elements in these 
argumentations: one about the content, one about the structure. Firstly, they are based 
on the same argument of the proof of the main statement, that is the exterior angle 
theorem. Secondly, the structure of these argumentations is always the following: if
we can apply a particular theorem, we deduce a certain conclusion, otherwise we 
deduce the opposite of that conclusion.
Other students answered in a very different way: they proposed the inverse of the 
main statement and they did not need to give any argumentation for this choice. The 
following episodes are just two examples of many similar protocols:   

158. Achille: if [the lines] are parallel, the angles are equal. 
159. Teacher: You are thinking about the first statement [the inverse]. How are 

you going to prove it? 
160. Achille: because…  if they intersect each other …  is so…  if they do not 

intersect … it is not so…
161. Teacher: Is this a proof? 
162. Achille: No. 
163. Teacher: But it is a convincing argument for you. 
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164. Achille: Eh… if we begin from two intersecting lines… the angles are 
different… if we begin from non intersecting lines, the angles will be equal! 

Achille is convinced, it is so evident for him that he does not need to propose any 
further argumentation. Also Gianna, in the written report, answers in a similar way: 
“In my opinion, it is like a schema: 

                                                           If the lines are 

                         parallel                                                                   non parallel 

  the alternate interior angles are equal                  the alternate interior angles are not equal”

According to Fischbein (1987, pp. 72-81), we can conclude that for Achille and 
Gianna the equivalence between a statement and the inverse is an intuition. In this 
regard, the Franca protocol is very enlightening. She proposes a logic argumentation 
based on the truth tables to justify the equivalence between a statement and the 
contrapositive1: her explanation is the only one we can consider a proof. 
Nevertheless, she also asserts the equivalence between the statement and the inverse: 

“But, in my opinion, it is correct to say also that, if r//s then we do not have any elements 
to prove that  and then we have to accept the thesis =.”

Even if Franca writes a meta-theoretical proof to support the equivalence between a 
statement and the contrapositive, she proposes an argumentation based on an intuition 
which can not be formalized in logic: “we do not have any elements to prove that 
and then we have to accept the thesis = ”. We explain these phenomena describing 
two convictions (Fischbein, 1982) that can coexist: the first one is the intuitive 
conviction that a statement and the inverse are equivalent; the second one is the non 
intuitive conviction that a statement and the contrapositive are equivalent. Other 
students, like Franca, write that the contrapositive is the equivalent statement, but the 
more intuitive conviction emerges and they affirm the equivalence of the inverse too. 
With words of Fischbein, the first one is an intuitive intrinsic type of conviction, the 
second one is a formal extrinsic type of conviction. We remark that the last one does 
not seem to have any effects on the first conviction which can still continue to be an 
obstacle.

1 We remark that the use of the truth tables was never used for problems of this kind neither 
by these students nor by the teacher.
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THE PROBLEM OF THE QUADRILATERAL 
After the episode of the parallel lines, the teacher spent some lessons to justify the 
equivalence between a statement and the contrapositive and the non equivalence 
between a statement and the inverse. The teacher’s explanations were based on two 
different contents: the proof by the truth tables and the familiar examples expressed 
in natural language. Three weeks later, students were asked to answer a test with two 
questions:
1) Write down the hypothesis and the thesis of the statement: If the angles of a 

quadrilateral are equals, the diagonals are equal.
2) Let us suppose that the statement of question 1) is proved. Which of the following 

statements is consequently proved?   
a) If the angles of a quadrilateral are not equal, the diagonals are different. 
b) If the diagonals of a quadrilateral are different, the angles are not equal. 
c) If the diagonal of a quadrilateral are equal, the angles are equal.

Question 1) is useful for us to understand if the answers to question 2) could be 
dependent on an incorrect identification of the hypothesis or of the thesis. Every one 
of the 43 students answered correctly to the first question, then we have to look for 
other elements to explain the students’ difficulties with the second question. Calling 
“main statement” the one about the quadrilateral in question 1), the statement in a) is 
the inverse, the statement in b) is the contrapositive and the statement in c) is the 
converse. The data of the answers to the second question are in the table:

inverse contrap. converse
inverse

and
contrap.

inverse
and

converse

contrap.
and

converse

Inverse,
contrap.

and
converse

15 9 8 6 1 2 2 
35% 21% 19% 14% 11% 

We underline that, in this case, the inverse is false; in the problem of the parallel 
lines, the inverse is true even if it can not be proved from the main statement. 
Nevertheless, a lot of students chose the inverse as their answer, both in the problem 
of the parallel lines and in the problem of the quadrilateral. 
After the test, the teacher asked the students to write down a report explaining the 
reasons for their answers.
In this case, the students did not have the proof of the main statement, then they could 
not use this proof to justify their choices like they did in the problem of the parallel 
lines. Then they produced a lot of examples, in order to recognize and to argument 
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the correct statement. We remark that, in this way, the students looked for the valid 
statement among the three proposed: they did not refer to the equivalence between 
the chosen statement and the main one. Just one student used correctly the truth tables 
to answer the question. Nevertheless, Marilena, after having proved that the main 
statement was not equivalent to the inverse using the truth tables, wrote that “we can 
not deduce [the inverse] from the proved theorem, even if it is intuitively true”. The 
presence of the intuitive conviction about the inverse is evident but now Marilena 
checks her intuition through a formal tool. However, the fact that a statement and the 
inverse are not equivalent is a formal extrinsic type of conviction, but it is not yet an 
intuition.

CONCLUSIONS
We have analysed the argumentations that students proposed to justify the 
equivalence between a statement and the contrapositive or the inverse: it emerged that 
most of these argumentations come from the proof of the main statement. When the 
students did not know this proof they have justified such equivalence producing a set 
of examples. In every case, their aim was to look for a valid statement and not a 
statement equivalent to the given one.  
According to Fischbein (1987, pp. 72-81), we can affirm that the (false) equivalence 
between a statement and the inverse is an intuition while the (true) equivalence 
between a statement and the contrapositive is not an intuition. Moreover, the 
argumentations proposed by the teacher, based on the truth tables and on familiar 
examples, did not help the students: just few students used these type of explanations 
to justify their answers, and even for them the topic did not become intuitive. 
According to Antonini (2003a, 2003b), Thompson (1996) and Freudenthal (1973), it 
is fruitful to set up situations in which students spontaneously produce indirect
argumentations, that is argumentations like “…if it were not so, it would happen 
that…” (Antonini, 2003b). Moreover, it is important to guide the students to the 
awareness of the structure of their argumentations, so that the knowledge of the 
equivalence between a statement and the contrapositive and of the non equivalence 
between the statement and the inverse becomes an intuitive knowledge. As Fischbein 
wrote:

"The training of logical capacities is a basic condition for success in mathematics 
and science education. We refer not only to a formal-algorithmic training. The 
main concern has to be the conversion of these mental schemas into intuitive 
efficient tools, that is to say in mechanisms organically incorporated in the mental-
behavioral abilities of the individual" (Fischbein, 1987, p.81).  

It is important that the contrapositive becomes a way of thinking, an intuitive 
knowledge, in order to assume the features of a thinking tool.   
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SOLUTION - WHAT DOES IT MEAN?
HELPING LINEAR ALGEBRA STUDENTS DEVELOP THE

CONCEPT WHILE IMPROVING RESEARCH TOOLS
David DeVries 

Georgia College and State University, Milledgeville, GA, USA 
Ilana Arnon

CET, Centre for Educational Technology, Tel-Aviv, Israel  (1)

Twelve linear algebra students were interviewed about the concept of a Solution of a 
System of Equations. The interviews were analyzed using APOS tools, in particular 
the ideas of Action, Process, Object and Schema, and Genetic Decomposition. The 
analysis of the interviews revealed several misconceptions of Solution. The analysis 
also revealed shortcomings of the questionnaire that was used in the interviews: It 
did not permit making a distinction between lack of knowledge and partial 
knowledge. Research tools were improved (questionnaire, GD, and suggestions for 
teaching materials) and prepared for the next cycle of research. 

THEORETIC PERSPECTIVE
The research reported here is part of a broader research effort conducted by the 
RUMEC (Research in Undergraduate Mathematics Education) group, which is 
dedicated to research within the scope of the theory named APOS. APOS is an 
acronym for the ideas of Action, Process, Object and Schema. This theory is an 
elaboration of Piaget’s cognitive theory (Piaget, 1975) for learning mathematics. 
Detailed description of this theory can be found, for example, in Asiala et al., (1996). 
Here we will only describe such elements of this theory that are used in this report. 

Action
According to APOS, the development of every concept begins in the learner’s mind 
with an action. At this level the learner can only perform the action one step at a time. 
For example, given a system of linear equations with n unknowns, as well as several 
tuples and matrices of different sizes, students are asked which of the givens is a 
possible solution. If the students start substituting each tuple separately, we suspect 
that they cannot imagine in advance whether a given tuple can be substituted and 
hence be a prospective solution. The theory accounts for such inability by the 
explanation that at the action level, the learners are able to complete the action step 
after step, but cannot think of it as a whole and predict its outcome; Sometimes they 
can also not describe it verbally. 
On the other hand, the behavior described above might indicate that substitution in 
order to check equality is the action used by these students as the starting point for 
                                          
1 ) This report was made possible with the help of:  CET, Centre for Educational Technology, Tel-Aviv, Israel; 

Georgia College and State University, Milledgeville, GA, USA; 
RUMEC, Research in Undergraduate Mathematics Education Community, and The Special Interest Group of the 
MAA on Research in Undergraduate Mathematics Education, SIGMAA on RUME. 
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conceptualizing solution. We will show findings indicating the possibility that some 
of our students used a different action for the development of the concept solution.

Process
When a learner successfully predicts the outcome, invents shortcuts and can describe 
the action verbally without actually performing it, we say that the concept has 
developed in his or her mind to the level of a process. For example, in the situation 
described above, if students can point to appropriate tuples as possible candidates for 
solutions, as well as explain the relation between the tuples’ length and the number of 
unknowns - we might infer that their conception of solution is at least at the process 
level. They are able to envision the action of substitution without actually performing 
it.

Object
When the learner can already perform a new mathematical operation on the process 
itself, or consider the process as an element of a set of processes of its type, with rules 
or operations within that set – we say that the concept has developed in the learner’s 
mind into an Object. Examples: 
a) If students, when confronted with a system of linear equations are asked “what 

does a solution look like”, are able to describe the form of a solution of that system 
- we may conclude that their understanding of solution is at the object level. 

b)  Another example of object level of solution concerns understanding the rule that 
the sum of two solutions of a homogeneous system is also a solution. Such 
understanding also requires an object understanding of solution, for otherwise the 
student would not be able to relate to the binary operation “sum of two solutions”. 

Genetic Decomposition 
Learners can begin the development of a certain concept out of different actions. 
These will result in different understandings of the concept (as opposed to different 
levels of understanding). A genetic decomposition of a specific concept consists of a 
detailed description of such possible action, and the typical mathematical behaviors 
and reactions of a student who has developed that same concept, beginning with that 
action, throughout the different levels (Action, Process, Object and Schema). Hence, 
a satisfactory GD can first of all be used as a diagnostic tool, providing the teacher 
and investigator with insight into the learner’s situation in the development of the 
concept. In addition, it helps the teacher and material developer to provide the student 
with activities which will enhance his progress in developing his understanding of the 
concept through the different levels Action-Process-Object-Schema.
It should be emphasized that a GD of a concept is in itself a developing structure. 
Also, it cannot be assumed to be unique. (DeVries et al., 2001.) 
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METHODOLOGY OF THE REPORTED RESEARCH 
The research reported here is the first cycle in such a research program. Fifteen 
students at a Teachers’ College took a one-semester course in linear algebra. Of the 
15 students, 12 were interviewed shortly after completing the course (the rest did not 
show up for the interview). The interviews were conducted individually. They 
consisted of a structured questionnaire, which each student solved in front of the 
interviewer and discussed his work with her. Each interview lasted about 45 
minutes, and was video-recorded. Question 1 was constructed to investigate the 
concept of solution (see appendix 1). 
The purpose of this part of the interview was two-fold:  Getting to know students’ 
ideas about solution, and getting started with a first version of a GD for this concept. 
We were not interested in statistical data about the occurrence of the different 
reactions, as the group of interviewees was not sampled and hence not 
representative.

FINDINGS
What we discovered after interviewing the students was that our questionnaire was 
not adequate for providing sufficient insight into our research questions. The 
responses to this questionnaire gave us little information about the constructions that 
students have made in their understanding of the concept solution of an equation.
This basically occurred because only students who had constructed a solution of an 
equation as an Object could answer the questions in a meaningful way. Also, this 
provided little possibility of distinguishing between “no understanding” and “partial 
understanding” (between the Action or Process levels). 
In the first part of this report we describe some of the responses obtained. Their 
analysis leads to suggesting an improved protocol for the interview, an initial 
version of a GD for solution, and a proposed teaching sequence. 

Response type 1:  What does it mean “What does a solution look like”
Some students at first tended not to reply to the question What does a solution look 
like?. Some explained they did not understand the question: 

Interviewer: We now deal with question 1:A. 
Hersch:        What does it mean “What does a solution look like” 
Interviewer: What do you think it will look like? 
Hersch:        The solution here is a number? 
Interviewer: What number for instance? Can you give an example? 
Hersch:        No, because I don’t understand the question. 

Upon further probing Hersch concluded: 
“If it’s a solution of such a thing, there are four elements here. ...So we should also get 
four solutions for such an equation.” 
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Hersch really could only think of a solution as a number. Consequently, questions 
regarding sums of solutions and number of solutions did not provide insight into 
Hersch‘s thinking. 

Response type 2:  Memorized rules about the sum of two solutions. 
Lin relied on a memorized rule rather than reason in answering questions about 
solutions.

Interviewer: Okay suppose we had two solutions u and v. Is u+v also a solution? 
Lin:             Yes by the rule that the sum of two solutions is also a solution. 

The interviewer questioned him as to why this rule was true and all Lin could do was 
repeat the rule. 
There is another indication of the fact that the rule students quoted was memorized 
without understanding. Some of them applied it both to homogeneous and to non-
homogeneous systems. Example: 
Earlier in the interview, Tania was certain that the sum of two solutions of a 
homogeneous system is also a solution. Now she is asked about a non-homogeneous 
system: 

Interviewer: Here is an equation. Is it homogeneous? 
Tania:          No. 
Interviewer: Why not? 
Tania:          It is not equal to zero. 
Interviewer: If we took two solutions of these infinitely many, and added them the way 

one adds vectors, will it also be a solution?… We’ll take an actual sum. 
Will the sum also be a solution? 

Tania:         Yes. 

We suspect that students who provided responses of types 1 and 2 have certainly not 
developed solution into the Object level. The deficiencies of our questionnaire 
prevented us from tracing any lower levels of knowledge, if such existed. 

Response type 3
Some students confused a solution of an equation (or system), with the constant 
"Right Hand Wing” of the equation (or system). This might be related to findings 
about the concepts associated by college (as well as k-12) students with the equality 
sign. Research shows that students of different ages tend to interpret the equality 
sign to mean: ”the result is”, rather than symbolizing equivalence (such as the 
equivalence accomplished when substituting a solution into both sides of the 
equations).  See for example Kieran, 1981. 

Response type 4: Solution as solving
Several students in response to the question of what a solution looked like, 
proceeded to solve the equation. Tania provides an example of this. She correctly 
described the procedure for finding the solutions of the equation. She did not think 
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of substitution to verify equality being a defining property of being a solution. It was 
apparent that most such students were confusing the concepts of solution and 
solving.
Our explanation of responses of type 4 is that for these students the concept of 
solution developed out of the action of solving the equation (or system of equations), 
rather than the action of substitution.  By this we mean the solving methods 
(algorithms) they used (such as Gaussian elimination, or any other).  Such 
algorithms are difficult to interiorize, and do not make it easy for the student to 
predict the form of the outcome, the solution, without actually calculating it.  Using 
APOS terms, we suspect that for these students, solution as solving is at the Action 
level of development, and we know that when a concept is still at that level of its 
development, the student can only perform the action one step at a time. Hence their 
tendency to start solving when asked about the solutions. Another characteristic of 
this level is that the student has no ability to predict the outcome without actually 
performing the action. Here - the students could not predict the mathematical form 
of the solution, of the outcome of the solving procedure, before they actually carried 
it out.  We predict that using the action substitution as basis for the development of 
the concept solution will end up with easier interiorization of the action and its 
transforming into process. 

AN INITIAL GENETIC DECOMPOSITION FOR SOLUTION 
We will sum up this discussion with a proposal of an initial GD for a solution of an 
equation:
An equation is an ordered pair of functions (f, g) with a common domain and a 
common co-domain.  A solution of an equation is an element s of the domain for 
which f(s)=g(s).  The solution set of an equation is the set of all solutions. 
Note: In linear algebra we are usually interested in linear functions from Fn to Fm , 
and the function g is constant. The pair (f, g) can be represented by means of a 
system of linear equations, matrices or linear transformations. 

SUGGESTED LEARNING SEQUENCE 
Action level of the concept equation, including solution.

We propose to start by helping students construct the Action level of the concept of 
equation, including the ability to identify the two functions, their common domain 
and co-domain, and solution in the sense of an element of the domain, the 
substitution of which produces a true equality. Here we propose to have them 
substitute elements of the domain into the two functions and learn to identify 
solutions and non-solutions. 

Process level of equation (including solution)
Students should be taught to identify the functions and their domains and co-
domains for various forms of equation, without being given examples of elements 
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for substitution.  They might also be asked to describe the format of possible 
solutions and non-solutions. 

Object level of solution
Here we recommend working on finite fields. Students might be asked to design a 
computer program that receives an equation as its input and produces the solution set 
of the equation as its output. The program does this by substituting and checking all 
the elements of the finite Zp

n for equality. The programming language ISETL was 
found to be adequate for that purpose (see Asiala et al., 1996).  Later, when we give 
students a system of equations over an infinite field they will face a need for other 
methods, as the previous method has now become useless for both computers and 
humans. Learning to solve algorithms will now include the understanding of what 
the algorithm does: It produces only substitutions that are truth-valued, and all such 
substitutions.

IMPROVED QUESTIONNAIRE 
In appendix 2 we presented our improved questionnaire. In the first interview 
(Appendix 1) most of the questions required an object level understanding of solution
in order to give any answer at all to the questions.  Consequently, we did not get any 
sense of the level of cognitive development regarding the concept.  So in the second 
round we tried to probe more fundamental constructions regarding the solution.  For 
example, in Question 1 we give the student a specific ordered pair and ask if it is a 
solution, rather than asking what a solution would look like.  This would indicate at 
least an Action conception if the student substitutes into the equation.
Further on, in Question 2, checking by substitution whether a matrix is a solution 
demands some tedious calculations.  If the students have reached process conception 
of solution, they might realize without actually substituting, that the 3x2 matrix (b) 
is non-substitutionable.  Thus we can identify a process conception of solution. 

CONCLUSION
In the present research cycle we learned a little about what students think of 
solution. We also recognized the deficiencies of our research tools. As a result, we 
constructed an improved questionnaire, an initial version of GD for solution, and a 
suggestion for a teaching sequence resulting from that GD. We are now ready for the 
next cycle of our research. 
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Appendix 1: The questionnaire of the reported research 
A. What is a solution of this equation (what does it look like)?  3x1+2x2 –x3+x4=5     

     How many solutions does the equation have? 

     Is the sum of two solutions also a solution?  What about a scalar multiplication? 

B. What does a solution of this equation look like? 1 2 3 4

1 1 1 1 3
x 1 x 2 x 0 x 1 1

0 2 1 1 0

         
                         
         
         

     Which of the following might be a solution? a. 1 0
2 1
 
 
 

b. 7 c. (1, 0, 1, 7) d.

2
0

1.5
7

 
 
 
 
  
 

     How would you check whether it is a solution? 

C. Here is a homogenous system of equations    Ax=0.   Suppose each of the vectors u and v 
is a solution of this system. What do you think of the vector  u+v?  Is it a solution of the 
system or not? 

(If no answer)  Would you like to use an example? 

(If no answer) Would you like me to present an example to you?

Here is an example:  
1

2

3

4

x1 2 3 0 0
x0 1 1 2 0
x1 0 1 1 0
x2 3 5 3 0

    
    
     
    
               

   What would be a solution of this 

system?

      Which of the following vectors is a solution 

1
2
0
0

 
 
 
 
  
 

,

2
2

2
0

 
  
 
  
 

,

8
8
8

0

 
 
 
 
  
 

  ?   How can we check? 

     Is the sum of two vectors which are solutions, also a solution? 

D. What about a non-homogenous system?  How does it differ from a homogenous system? 

      Here is a non-homogenous system:      
1

2

3

4

x1 2 3 0 1
x0 1 1 2 1
x1 0 1 1 0
x2 3 5 3 1
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Suppose each of the vectors u and v is a solution of this system. What do you think of 
the vector  u+v?  Is it a solution of the system as well?  How can we check/prove? 

E.      A and B  are nxn matrices of the same order.  What would be a solution of such an 
equation: AX=B 

Appendix  2:  The new questionnaire 
1. Consider the equation 2x1 + 3x2 = 6 

(a) Explain why [6,-2] is a solution.    (b) Find another solution. 

(c) What is the sum of the solution in (a) and your solution in (b)? 

(d) Is the sum you found in (c) also a solution? Why or why not? 

(e) Is a scalar multiple of a solution also a solution? Why or why not? 

(f) How many solutions does this equation have? Explain. 

2. Consider the equation: 
1 2 7 0
0 1 X 3 0
3 2 9 0

   
      
      

(a) Is 1 0
3 0
 
 
 

 a solution?  Why or why not?      (b) Is 
1 0
4 1
6 2

 
 
 
  

 a solution?  Why or why not? 

3. Consider the system of equations:  3x1 + 2x2  - x3= 0     x1 -   x2  + x3= 0 

(a) Is [2,-3,0] a solution? Why or why not? (b) Is [3,-2,-5] a solution? Why or why not? 

(c) Does the system have more than one solution? Explain. 

(d) Find the solution set of the system. 

(e) Is the sum of two solutions also a solution? Why or why not? 

(f) Is a scalar multiple of a solution also a solution? Why or why not? 

4.  Consider the equation: 

1 2 3
0 0 1
1 0 1
0 0 2

 
 
 
 
 
  

 X  = 

0
1
0
2

 
 
 
 
 
  

(a) Is 

0
1
0
2

 
 
 
 
 
  

a solution to this equation?  Why of why not?  (b) Is  
0
0
1

 
 
 
  

 a solution to this 

equation?  Why or why not? 
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          ORGANIZING WITH A FOCUS ON DEFINING 
         A PHENOMENOGRAPHIC APPROACH 

           Amir. H. Asghari
       University of Warwick   

This paper is based on the preparatory study of a doctoral study in which we learned to 
consider defining in the realm of organizing. In particular, having engaged students in a 
situation based on “equivalence relations” (from an expert point of view), we report two 
different ways of organizing the given situation. One of them results in a “new” 
definition of equivalence relations, and consequently a new representation for them, that 
seems to be overlooked by the experts.

INTRODUCTION
Definitions are inextricable parts of higher courses in mathematics. They give 
definiteness to the concepts to be taught in the course; they designate whether 
something is an example or not, and they are used in proofs. Embracing those 
referential and inferential aspects, definitions are tools to organize the content of the 
course; or in general, as Freudenthal (1983, pp.ix-28) says, they “have been invented 
as tools to organize the phenomena...phenomena from the concrete world as well as from 
mathematics...”. In addition, incidental to their role as means of organizing, they 
embody two kinds of the lecturers' (or the mathematicians’) choices, first, their 
choices of what appears to be important to be defined, and second, their choices 
between possible definitions of what is defined.
Accordingly, researchers examine possible ways of introducing definitions when 
developing new concepts. According to Freudenthal (ibid, p.32), one possibility is
describing definitions in their relation to the situations of which they are the means 
of organizing; then, “starting from those phenomena that beg to be organized and from 
that starting point teaching the learner to manipulate these means of organizing." 

This study has partly adopted Freudenthal's plan in that students were engaged in a 
situation that begs to be organized, though it aims at investigating the ways that 
students organize a given situation, rather than teaching them any particular ways of 
organizing that. In particular, this study is a phenomenographic investigation of 
what counts as defining when students organize a situation in which they have an 
opportunity to experience referential and inferential aspects of definitions in 
conjunction with their choices of the ways of organizing the given situation.  
Adhering to a phenomenographic research approach, the study was conducted by 
holding individual in-depth task-based interviews, in which a task was used for 
querying students’ referred concepts. All the interviews were audio-taped, and they 
were analyzed to explore what students used to organize the situation, and what 
they did to organize the situation. 
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A country has ten cities. A mad dictator of the country has decided that he wants to
introduce a strict law about visiting other people. He calls this 'the visiting law'. 
A visiting-city of the city, which you are in, is: A city where you are allowed to visit
other people. 
A visiting law must obey two conditions to satisfy the mad dictator: 
   1. When you are in a particular city, you are allowed to visit other people in that city. 
   2. For each pair of cities, either their visiting-cities are identical or they mustn’t have
any visiting-cities in common. 
The dictator asks different officials to come up with valid visiting laws, which obey both
of these rules. In order to allow the dictator to compare the different laws, the officials are
asked to represent their laws on a grid such as the one below. (See the results section)

The importance of the issue can be clearly seen in other researches regarding 
defining. For example, Mariotti and Fischenbein (1997), in a teaching experiment, 
brought defining into the realm of students’ experience. In their experiment, 
amongst others, two phases are worth considering, first, introducing a problem 
situation in which "the concept to be defined functionally emerges from the solution of a 
problem", and second, the indispensable and involved role of the teacher in their 
experiment, to guide students to overcome the conflict between "…the spontaneous 
process of conceptualization and the theoretical approach to definitions”. Nevertheless, 
they repeatedly report the students' unforeseen difficulties to transcend the concrete 
situation to reach to the intended “systematic organization of concepts”.
This and our initial data have led to the idea of looking not for how students define 
the intended concepts, but which concepts they determine are important for 
organizing the situation and what part defining play in that organization. 

PREPARATORY STUDY 
This paper is based on our preparatory study in which a smallish sample of students 
was engaged in the following tasks (see Table 1&2):

             Table 1
The mad dictator decides that the officials are using too much ink in drawing up these
laws. He decrees that, on each grid, the officials must give the least amount of information 
possible so that the dictator (who is an intelligent person and who knows the two rules) 
could deduce the whole of the official's visiting law. Looking at each of the examples you 
have created, what is the least amount of information you need to give to enable the 
dictator deduce the whole of your visiting law.    

             Table 2 
When devising this situation the researcher had the standard formulation of 
‘equivalence relation’ and ‘partition’ in mind (e.g. Stewart and Tall, 2000). And the 
situation was originally designed with the intention of seeing how the students 
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proceed with what was then considered to be the only way of organizing the 
situation in order to come to the definitions of ‘equivalence relation'. 
In detail, having captured the reflexivity in the first condition of a visiting law, the 
situation aimed at leading students to the symmetry and transitivity through creating 
their own examples demanded in the first task on the one hand, and giving the 
minimum amount of information demanded in the second task on the other hand. 
The study started with a small opportunistic sample of students comprising one 
graduate mathematics student, two first year mathematics students, two second year 
physics students (initial sample)  , and then with one computer science student, and 
one sixth-form student (the last two will be used to describe the merits of the study).  
The initial data revealed that the students spontaneously created their own way of 
organizing the given situation which are not necessarily those intended by the 
situation designer. Accordingly, the intention of the study became an investigation 
of the ways that students organize the given situation. In addition, those results led 
the study to the phenomenographic methods to provide the study with a conceptual 
framework for describing the variation of ways of organizing the given situation.  
Methodology 
As mentioned this study adhered to a phenomenographic approach. According to 
Marton and Booth (1997) phenomenography is a research approach that aims to 
reveal and describe the variation of ways of experiencing a phenomenon or a 
situation. Having this in mind, we elaborate our methodology in the context of two 
interviews with two students having no formal previous experience of equivalence 
relations and related concepts usually used to define it. Tyler is an undergraduate 
computer science student and Jimmy is a sixth form student studying mathematics.  
The interviews had a simple structure; the two tasks (Table 1&2) were posed in 
order, but the timing and questions were contingent on students’ responses. The 
interviews aimed at reaching a mutual understanding between interviewer and 
interviewee (in the sense of Booth et al, 1999, p.69) of the situation and the ways 
that interviewee organized it. Therefore the interviewer did not judge the 
interviewees' utterances as to his own understanding, and insisted on the students 
giving transparent reasons for their decisions, mainly, as Marton and Booth 
(1997,p.130) say, “through offering interpretations of different things that interviewee 
has said earlier in the interview”. Tapes and written work were treated as data; and 
they analyzed according to the phenomenographic analysis method in which, as 
Booth (2001, p.172) says, ‘the data is pooled, temporarily losing the individual context 
in which it was gathered and gaining a collective context of the voices of other individuals 
who have contributed to the data. The researcher engages with this pool of data and seeks 
critical differences that can act as catalysts for an understanding of the whole'.

Results
Regarding Jimmy’s work and Tyler’s work, two differences can be identified:
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- The difference in what they did to organize the situation 
- The difference in their outcomes 
The difference in what students did to organize the situation 
To satisfy the first condition of the given situation (Table 1), Jimmy and Tyler 
blacked the diagonal and continued as follows (Table 3): 

        Table 3
Jimmy “has a rule to apply”; he suspends his reasoning and replicates the result. In 
other words he replicates a two by two block-square (table 4). On the other hand, 
Tyler considers two things, “mirroring in y equals x” and “box” (square), and then 
“to see what was happening” he decides to make city one visit city ten (table 4). 

     Table 4 
As a result, Tyler abandons the “block square”, keeps the “mirroring” and proves it 
as a “general pattern of these dots” (if (x, y) then (y, x)). In addition, the way that he 

T- If I am in city one, and we allow
to visit city two, how the other
things need to change, to keep the
rules consistent and see either they
are completely the same or
completely different, so aha, so city
two now have to be able to visit
city one… 

J- Now we have to satisfy the second
condition, for    each pair of cities, either
their visiting-cities are identical, if you have
the city one, if you can visit two, you have
to, in city two either you can visit city one,
like that, you have to because otherwise,
they have something in common already, so
you have to be able to visit. 

J- And likewise, if you go like that in
pairs…It’s like paired-up, so if you
compare one and two, they have every
thing in common, identical, if you
compare one and three, one and four,
one and five, or one and six, they have
nothing in common… 

T- … and I realised first that, city ten 
has to visit city one…so that the 
second law …city ten has to visit city 
two…now I look at the city two, now I 
realised they are different from city 
one…so I copy number one on to 
number two also just to keep them the 
same…
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proves “mirroring”, gives him a new insight, i.e. considering the relationship 
between any two individual cities: 
Tyler- If you allow a city to visit any other city, then it’s gonna end up with having the 
same visiting-rules as that city that’s allowed to visit and vice versa... 

Jimmy still keeps the “block square” to generate his next examples, while Tyler 
uses “mirroring” and its proof. 

                                                                                                 Table 5 

Then Tyler draws out, from the big block squares and “a sort of square” appeared in 
his last example (presented in table 5), the concept of the group of cities:  
Tyler- …I completely lost of this sort of way of representing the laws (on grid) because I 
think they start showing what cities are reachable…in sort of groups you can reach one of 
the other by travel down the road, you allow to pass the cities between to get from one to 
other…

Although Jimmy uses the group of cities to organize the given situation, his way is 
qualitatively different from Tyler's. As it can be seen in the table 4, Jimmy divides 
cities into two groups, one of them (focal group) includes identical visiting-cities 
and another one includes the rest (except for his example illustrated in the table 5 in 
which two views coincide), while Tyler divides cities into groups so that, each 
group includes identical visiting-cities. That is, from our perspective, Tyler has the 
notion of partitions, while Jimmy has a split in the set of cities into ‘the group I’m 
currently working with’ and ‘the rest’. 
The difference in their outcomes 
While the result of Jimmy’s work is many individual examples, Tyler transcends 
the situation by introducing new concepts. Particularly, he introduces a new concept 
with general applicability (the ‘box concept’):

J- …I think there is something to do with
square along this line of one and one, two
and two, three and three, four and four, five
and five; along this line …if you draw a
square…people from this city, this city and
this city are able to visit each other, they
will have identical connection, but other
people will not be able to visit them…so
people from this group and this group
haven’t anything in common, but inside,
then, they are identical. 

T- city three can visit city five and
seven…so I think of course it’s
gonna be reflected in y equals
x…No, this is not I want to finish,
because now I have cities that have
dots in common and they aren’t the
same…what I’m
missing…what I’m saying here is a
sort of square… 
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Tyler- How do I say that columns must be the same mathematically? (He writes)
  If (x1, y1) and (x1, y2) and (x2, y1) then (x2, y2)
Interviewer- Could you explain. 

Tyler- I think it’s a mathematical way of saying …if a column has two dots, and there is 
another column with a dot in the same row, then that column must also have the second 
dot in the same row…I take maybe a box of four dots…I use the coordinate because that 
makes it very general, and so if I made that my second law, for a mathematician might be 
easier to follow. 

Given this, an equivalence relation can be understood as a relation having the 
reflexive property and the box property (If (x1, y1) and (x1, y2) and (x2, y1) then (x2,
y2)). That is, Tyler has explicitly generated a new (and, for us, unexpected) 
definition (which happens to be mathematically equivalent to the standard definition 
of equivalence) in order to organize this situation.
As an ongoing study, we are seeking a more detailed picture of such differences in 
the light of our new data. Thus let us at the moment focus our attention on different 
ways of organizing related concepts as informed by the present data.   
Equivalence relations, revisited 
The normative definition of equivalence relation, based on reflexivity, symmetry 
and transitivity, is widely used to introduce the subject. So let us have a look to the 
other definitions of it, learned through our data: one based on box concept, and the 
other based on “triangularity”. The following diagrams shows how, having 
reflexivity and box concept, we can deduce symmetry and transitivity.
    c    
   b     b  
   a      
        a      b        a        b 
(a, b), (a, a), (b, b) (b, a) is the (a, b), (b, b), (b, c) (a, c) is the
are three corners of      forth corner            are three corners of           forth corner 
        the box              the box 

Although the normative way of defining equivalence relations and its definition 
based on the box concept are logically equivalent, they have dramatically two 
different representations that could affect students’ understanding of the subject. 
For example, Chin and Tall (2001) suggested “the complexity of the visual 
representation” as to the transitive law as a source of a “complete dichotomy between 
the notion of relation (interpreted in terms of Cartesian coordinates) represented by 
pictures and the notion of the equivalence relation which is not”. Accordingly, they 
suspected that that dichotomy inhibits students from grasping the notion of relation 
encompassing the notion of equivalence relation. However, the above figures show 
that the stated dichotomy, to a large extent, depends on the standard way of defining 



www.manaraa.com

PME28 – 2004  2–69

equivalence relation, i.e. if we define equivalence relation as a relation having the 
reflexive property and the box property, that dichotomy would disappear.  
It is worth saying that the notion of equivalence relation defined by the box concept 
and its normative definition reveal two different ways of organizing the related 
concepts. While the former provides us with a simpler visual representation, the 
latter endows the subject with a seemingly more comprehensive quality in which 
two important types of relations, equivalence relations and order relations can be 
seen as particular types of transitive relations. Leaving a concept suitable for 
organizing a local situation in favour of grasping a more global picture is a 
particular aspects of mathematics that once again appear as to “triangularity”. 
Triangularity is the name that for the sake of this paper is given to one of the most 
common way that our students tackled the situation, i.e. relating the cities in a group 
of related city without any particular order or any direction, or referring to 
equivalent columns without any particular order. Beyond this particular situation, 
triangularity means when two things are related to a third, the first two are related to 
each other too. In detail, it is a disjunctive concept, that, if a is related to b and b is 
related to c then a is related to c or if a is related to b and a is related to c then b is 
related to c (As it can be seen the first part of this or condition is what is known as 
transitivity). It is the concept that is seemingly behind Euclid’s account of equality 
(far long before having any account of relations or equivalence relations), the first 
among common notions, that, “things which are equal to the same thing are also 
equal to one another” (Heath, 1956, p.155). And it is the concept that is clearly 
behind Freudenthal’s account of equivalence relations (in the years of having 
transitivity as one of the distinct concept comprising equivalence relations). 
Freudenthal (1966, p.17) defines equivalence relations as a relation possessing the 
following two properties: first, “every object is equivalent to itself (reflexivity)”, and 
second, if “two objects are equivalent to a third, then they are also mutually equivalent 
(transitivity)”, and shortly after that he notes that those two indicate symmetry 
property, that, “If an object is equivalent to a second object, then the second object is also 
equivalent to the first (symmetry)”; but he emphasizes that “actually, the first two 
properties are sufficient” to define equivalence relations. While, in the course of 
defining equivalence relations, he uses the term transitivity for what we call 
triangularity, a few pages on (ibid, p.19), when considering order he uses the term 
transitivity for what is usually known as transitivity:
…and if, for every three different members a, b, c, of Z it follows from a< b and b< c, 
that a <c (transitivity of the <-relation). 

 Having a group of “equivalent elements” in mind, there is no way to separate 
transitivity from triangularity; that is probably why Freudenthal exploits the term 
transitivity where he uses triangularity, and in the same vein, Skemp (1971, p. 175) 
does so: 
The importance of the transitive property is that any two elements of the same sub-set in 
a partition are connected by the equivalence relation. 



www.manaraa.com

2–70  PME28 – 2004

And that is why no student in our study (not even in the initial interviews where 
interviewer had a bias toward the standard definition) could notice transitivity as a 
distinct property. In general, not only in our situation, but also in any other situation 
based on splitting a set into disjoint sub-sets by using a particular relation, there is 
no way to bring the transitivity up unless it is taught. That is probably why Stewart 
and Tall (ibid, p.73), right after comparing two relations, one splits a certain set into 
disjoint pieces, and the other does not, “take account of three very trite statements”
(including transitivity)as what makes the former work.    
Deep down, while by standard account of equivalence relations and order relations, 
they fall into our hands as special cases of transitive relations, as a drawback, we 
impose something extra on the equivalence relations, i.e. a sense of direction or 
order.
Conclusion
As it can be seen in the Mariotti and Fischenbein’s study (ibid), it is widely taken 
for granted that there is a fixed concept that the students are trying to negotiate, but 
the present study (and implicitly Mariotti and Fischenbein itself) suggests that these 
open tasks (that designed around an intended concept) can be organized in different 
ways. Thus a categorization of a) how they are organized and b) what is organized, 
is of clear value.
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  MEDIATION AND INTERPRETATION: EXPLORING THE 
INTERPERSONAL AND THE INTRAPERSONAL IN PRIMARY 

MATHEMATICS LESSONS 
Mike Askew

King’s College, University of London 
This paper describes a theoretical model for examining teaching and learning in 
primary mathematics classrooms. The model in intended to be both analytical – to 
provide insights into classroom incidents – and heuristic – to inform planning and 
practice. This paper reports on the elements of the model, which are based on 
Vygotskian theory and encompass both the interpersonal and the intrapersonal. An 
example is provided illustrating how the model can be used to examine the meaning 
making processes  of individual pupils. 

1 INTRODUCTION 
The focus of this paper arises from interest in how teachers and pupils co-construct 
mathematical meaning, through the dialectic between the processes of participating in 
mathematics lessons, and the processes of individual cognition (Cobb & Bauersfeld, 
1995). This interest is both theoretical and empirical. Over the course of a five-year 
longitudinal research programme (the Leverhulme Numeracy Research Programme) a 
team of researchers has sought ways of developing a theoretical model to help to explain 
the differential acquisition of mathematics that was observed (see for example, Askew, 
Brown, Denvir, & Rhodes, 2000). 

2 THEORETICAL BACKGROUND 
The model is based in a Vygotskian theoretical framework that assumes learning to 
precede intellectual development through mediated transactions (Cole, 1996; Wertsch, 
1991). Matusov (1998) distinguishes between a view of development as coming about 
through participation or through internalisation, arguing that a preference for one or 
other of these theoretical positions comes from different world-views. In discussing 
Matusov’s work, Daniels (2001) distinguishes between ‘skills and functions in the 
‘internalisation thesis’ and ‘meaning’ in the ‘participation antithesis’ (p. 40).  
However, rather than preferring one position – participation or internalisation – we 
consider it is necessary to work with both (whilst sharing other writers’ concerns with 
the use of the metaphor of ‘internalisation’). While pupils’ participation in mathematics 
lessons may shape the mathematical understandings that they acquire, it cannot 
determine then uniquely: one only has to witness the range of meanings demonstrated by 
pupils who have participated in the ‘same’ lesson. Hence in the development of a model, 
we seek to understand both the interpersonal and the intrapersonal and the relationship 



www.manaraa.com

2–72  PME28 – 2004

between the two. Other models that influenced our thinking, in particular that of Saxe 
(1991) incorporated both these aspects, but we sought to develop a model that would 
also enable us to examine the inter- and intra-personal on their own, as well as in 
conjunction. Thus there are two parts to the model: an observable set of parameters 
examining mediating means and a more interpretive set of parameters exploring personal 
meanings.

3 THE THEORETICAL MODEL: MEDIATING MEANS 
At the observable level we found the following four parameters to be the most helpful, 
in terms of framing both our observations and the subsequent analysis: tasks, artefacts,
talk and actions.
3.1 Tasks 
The mathematics lessons that we observed were all based around a task or tasks that the 
teacher initiated for the pupils to work on, and in this, we consider them to be typical of 
mathematics lessons in England. The teacher herself may have determined the actual 
nature and content of the tasks or she may have directed the pupils to work from a text-
book or work-sheet. Whatever the origin, we take tasks to be a key mediating means for 
working with pupils on mathematical meaning. At the observable level, we take tasks to 
be publically set up and initiated, linked, as we argue below, to individuals’ sense 
making; to individuals’ activities.
3.2 Artefacts 
The everyday usage of artefact is simply to refer to a material object. While classrooms 
are clearly full of material objects, our definition of artefacts goes beyond ‘brutally 
physical objects’ (Bakhurst, 1995). Artefacts have a dual nature, having not only a 
‘material’ dimension but also an ‘ideal’ (conceptual) dimension: 

(T)he artefact bears a certain significance which it possesses, not by virtue of its physical 
nature, but because it has been produced for a certain use and incorporated into a system of 
human ends and purposes. The object thus confronts us as an embodiment of meaning, 
placed and sustained in it by ‘aimed-oriented’ human activity (Bakhurst, 1995) 

In this sense mathematics classrooms are the home of many artefacts: hundred squares, 
number lines, base ten blocks,  etc. Children’s fingers or other body parts would also be 
considered as artefacts when used for counting or calculating. We also consider more 
transitory objects to be artefacts: symbols, diagrams and so forth. Whilst talk could be 
considered under this definition to be an artefact, for reasons set out below, we choose 
to treat it separately. 
Artefacts do not come into being with the ‘ideal’ in an immediately apprehendable form: 
the ideality must be mediated, usually through talk and actions. While a hundred square 
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could be a material presence for a two-year-old, it would not have the ‘ideal’ dimension 
that it might for a ten-year-old. We are interested in how pupils come to ‘read into’ 
artefacts the ‘ideality’ inscribed in the material? 
3.3 Talk 
As Cole (1996) points out, a ‘material’ and ‘ideal’ view of artefacts means that 

the properties of artifacts (sic) apply with equal force whether one is considering language or 
the more usually noted forms of artifacts such as tables and knives which constitute material 
culture (p. 117).

Thus we might argue for considering teachers’ talk within the category of artefact. 
However we chose to separate out ‘talk’ from ‘artefacts’ for several reasons. Firstly, 
mathematical classrooms are unusual in the extent to which there are a number of 
pedagogical artefacts (that are not talk) that exist and take meaning only within the 
context of classrooms. Many classroom mathematical artefacts are primarily pedagogical 
and usually only found within classrooms. The artefactual ‘paraphernalia’ of 
mathematics classrooms seems worthy of attention its own right.  
Secondly, talk is probably the principal artefact through which teachers and pupils co-
construct meanings. Without talk classroom participants would have difficulty imbuing  
pedagogical artefacts or lesson tasks with meanings. Talk is not only an artefact in its 
own right: it is also a mediating means for developing shared meanings for tasks and 
other artefacts. Thirdly, talk is unique amongst artefacts in its self-referential nature. 
Verbal explanations are used to clarify other verbal explanations in a way that physical 
artefacts are not.
Finally, unlike talk, the majority of artefacts used or produced in mathematics lessons 
are usually introduced by the teacher. In lessons characterised by a high level of 
discussion involving pupil-pupil talk as well as teacher-pupil talk then pupils are 
involved in the production of mediating means for their peers.
3.4 Actions 
Many of the artefacts of mathematics classrooms go beyond providing visual images of 
mathematics and are designed to be acted upon, either by the teacher or pupil or both. 
Even when not designed to handled (for example a wall mounted 100 square), actions
are invoked in working with artefacts (for example, imagining movement around the 
squares on a 100 square). Also, in helping pupils appreciate the meaning of 
mathematical operations that might be associated with symbols, action based metaphors 
are often invoked, verbally and/or through physical models. For example, subtraction as 
‘take-away’ or division as ‘share’. In such instances, actions are important mediating 
means to help link talk and artefacts.
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Although discussion of each of these parameters is treated separately above, they are 
interdependent. For example the setting up of a classroom task may involve use of talk,
artefacts and actions.

4 THE THEORETICAL  MODEL: PERSONAL MEANINGS 
So far we have focused our attention on observable aspects of mathematics lessons. But 
as Lemon and Taylor (1998) remind us, examining the material world only provides a 
partial story: 

We never perceive only raw matter, nor do we perceive only mental phenomena. We always 
experience the action between the two. (p. 230) 

Looking at tasks, talk, artefacts and actions as mediating means can give some insights 
into the sorts of experiences in which pupils have the opportunity to participate. 
However, we also need to consider the sense that participants make of such experiences. 
While we cannot directly observe such sense making, we can take teachers’ and pupils’ 
particular responses to and uses of mediating means as indicators of how they are 
interpreting their experiences. So linked to our four parameters of mediating means, we 
have worked with three interpretive parameters of: activity, tools and images.
4.1 Activity 
Tasks are publicly set up, activities are tasks as privately interpreted. In setting up 
classroom tasks, teachers will have their individual interpretations of the activities that 
the tasks are intended to provoke (although such understanding may be tacit and the 
distinction between a task and an activity not explicitly addressed). Pupils will always 
interpret classroom tasks in the light of their previous experiences and current 
understandings. However carefully a teacher sets up a task, one cannot assume that the 
individual pupils’ interpretations of that task, the activities that they engage in, are either 
similar to each other’s, or fit with the activity expectations of the teacher. Hence the use 
of the term activity to distinguish any one individual’s interpretation from the ‘public’ 
presentation of a task.
4.2 Tools 
Cole (1996) argues for the treatment of ‘a tool as a subcategory of the more general 
conception of an artifact’ (p. 117). However, rather than consider tools as subcategories 
of artefacts, we define them as the personal meanings attached to artefacts.
We begin this definition by drawing on the distinction between interpersonal meanings 
and intrapersonal meanings and linking these with artefacts and tools respectively. As 
indicated we consider artefacts as embodying ideas, interpersonal meaning, alongside 
having some material existence. A hundred square on the classroom wall is intended to 
be ‘aimed-oriented’ as embodying particular aspects of the number system. The 
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interpersonal ‘meaning’ embodied in an artefact is, in a sense, objective, transcending 
the sense making of any particular individual. 
On the interpretative plane, we want to argue for a conception of tools as more personal 
arising from the interpersonal meaning unique to any individual working with an 
artefact. Just as the relationship between tasks and activities needs to be examined, so 
too the relationship between artefacts and tools.
4.3 Images 
We define images as broader than visual images to include verbal or kinaesthetic 
images. We do not consider that there is any simple one-to-one correspondence between 
external mediating means and the images that might be provoked. For example, an 
external visual artefact may produce an internal kinaesthetic or verbal image just as it 
might produce a internal visual image. We are not interested in the mechanisms whereby 
images are provoked, nor in understanding the mechanisims by which external 
mediating means become internal images. We are interested in the impact of individuals’ 
images on interpersonal mathematical meaning making.  
Once again, although described separately, these are not independent of each other. The 
use of particular tools may depend on access to certain images and together they may 
affect the nature of activity. The following analysis further illustrates the interplay 
between the parameters. 

5 ANALYTICAL APPLICATION OF THE MODEL 
As an example of the use of the framework as an analytical tool, we present data from 
one lesson observed over the course of five-years of lesson observations. (For a more 
detailed account of the research from which this example is drawn see Brown, 2002). 
Given the level of detail that the analysis yields, restrictions of space prevent the 
reporting on the response of more than one pupil; Mayur. However, the full analysis 
demonstrates that although set up by the teacher to be working on the ‘same’ task, the 
pupils’ individual responses meant that they engaged in distinct activities and 
consequently, we suggest, were likely to have established different meanings.  
The group observed, of which Mayur was a member, had not been singled out by the 
researcher for particular attention, there just happened to a spare chair at the table that 
they were working at during the observation. After the lesson, the teacher indicated that 
the children at this table were in the “middle” group of maths attainment. When the 
researcher (MA) joined them they were each working through calculations from 
identical worksheets: finding unitary fractions of whole numbers, for example, 1/4 of 36 
or 1/5 of 40 (all with an exact whole number answer). There were 12 such calculations 
for the children to answer. 
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At the end of the lesson, the children’s completed worksheets suggested that the other 
children in the group had carried out all the calculations correctly whereas Mayur, while 
getting some correct, had made several errors in his calculations. But as our observations 
of Mayur’s methods of working show, the differences in his answers were not simply 
the result of correct or incorrect calculations but arose from different interpretations of 
the task: the activities that he engaged in changed as he worked through the task. (And 
the full analysis shows that, although arriving at correct answers, neither could the other 
children be considered to have been engaged in the same activity)
Most of the pupils on the table were observed to have chosen one method of calculation 
and then used that for all the calculations. In contrast, Mayur did not consistently use 
only one method. He did the first four calculations using a tallying method, for example, 
finding ‘1/4 of 36’ by marking tallies in rows of 4, each row under the previous one and 
counting on in 4’s until he reached 36 (doing his working on scrap paper that ended up 
in the waste-bin). Counting the number of rows of tallies gave him his answer. Thus 
Mayur’s initial actions involved partitioning the total into requisite groups through the 
use of the artefact of groups of tallies. 
However, for the fifth calculation –‘1/3 of 21’– Mayur initiated a change of artefacts
and actions. Rather than recording tallies in groups of three as he had done previously, 
he verbally counted on in threes, keeping track of this by holding up one finger for each 
multiple of three pronounced. Once he reached 21 he counted the number of raised 
fingers (seven). Similarly for ‘1/5 of 30’ he counted on in fives, raising a finger for each 
multiple of five, thus ending up with six raised fingers.  
Rather than count in ones (as other children in the group were observed doing) Mayur’s 
initial artefacts and actions – lining up of the tallies under each other – meant that in a 
sense his artefact controlled his actions: once a group of tallies was complete there was 
an umabiguous signal to start the next set of tallies. This facilitated his use of skip 
counting in the pattern of multiples. In doing so, he attended to counting up in groups: to 
a repeated addition method of solution. His use of the pattern of multiples as a tool  then 
allowed the development of what were, for him, more efficient methods through 
different artefacts and actions, but which in turn appeared to affect his images and 
activity.
In coming to represent the divisor as a unitary group – a single finger representing a 
group, rather than tally all the elements – Mayur employed a different artefact (and 
tool), a ‘compacted’ representation. Instead of relying on paper and pencil to model the 
full quotitioning of the number to be divided, he only had to count the number of fingers 
he held up. But with this change of artefact there was a resultant shift in his attention 
and activity as his subsequent work demonstrated. 
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On question seven –‘1/3 of 30’– Mayur announced (to no one in particular) that he was 
going to ‘cheat’. Looking back at his answer to ‘1/3 of 21’ (7) he immediately held up 7 
fingers, counted on in threes from 21 to 30, putting out three more fingers and writing 
down ‘10’. The next calculation was to find ‘1/10 of 20’, but rather than use tallies or 
fingers, Mayur immediately wrote down ‘10’.  
MA:   Why is the answer to that ten?  
Mayur: You have to find which table the number is in. Twenty is in the  

tens table, so the answer is ten. 
Similarly he wrote down ‘10’ as the answer to ‘1/8 of 40’ but changed this to ‘4’. 
Mayur:  I got it wrong. It's not which table it's in, but where in the table.  
He wrote down ‘5’ as the answer to ‘1/2 of 50’.
MA:   Why is that five? 
Mayur: It’s in the ten times table and it’s the fifth one’.  
Finally, checking back over his work, Mayur changed his answer to ‘1/3 of 30’ from 
‘10’ to ‘3’ and ‘1/10 of 20’ from ‘10’ to ‘2’! 
Mayur’s attention to the action of holding out the total number of fingers was, initially, 
correctly linked to the divisor. However, in counting up to the dividend he focused 
(literally and metaphorically) more on the number of fingers than on the running total. A 
shift from ‘count on in 4’s to 36’ to ‘9 makes up 36’ (with the 9 being linked to groups 
of 4 becoming more tacit). So rather than starting with the divisor his attention shifted to 
the dividend as being the most significant item of information. In attempting to be even 
more efficient, he began to attend first to the dividend and his activity become one of 
‘spotting’ the obvious table that that particular dividend would be in. Given, say, a 
multiple of 10, then the calculation, for him, must be something to do with the ten times 
table.
Note that initially Mayur went as far as re-interpreting the task as the activity of ‘which 
table is this number occurring in’: if the dividend was 30 then the answer must be 10 (30 
is obviously in the ten times table).  Subsequently he ‘self-corrected’ himself to ‘where 
in the table’ the dividend was, but still a ‘table’ of his own determination (the most 
obvious one) rather than determined by the divisor: if the dividend was 30 then the 
answer must be 3 (it’s the third multiple in the tens table).   

6 DISCUSSION 
With the action of drawing up tallies Mayur, was still producing artefacts that 
represented all the information in the calculation: the size of each group, his progress 
towards the total number to be divided and when the total was reached. But in the move 
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to holding up fingers, the only external artefact then available was the total number of 
groups. All the other information Mayur had to hold in his head. Along with focusing on 
the number of fingers he had held up, his attention shifted away from building up to a 
total (by skip counting) and instead to focus on the position of the divisor in the pattern 
of multiples. So while his tools may have been more efficient, they influenced his 
activity.
We are not suggesting that alternative activities are ones that the children may 
consciously develop, but that different activities are potentially present through the 
choice of diiferent artefacts (for example, columns, fingers) as mediating means and 
consequently the tools children use to carry out the task. The relationship between tools 
and activity is dialectical – each is informed and informed by the other. It is not simply a 
case of children understanding tasks and then selecting appropriate artefacts to use, that 
each of these together influence the activities and tools and hence the mathematical 
meanings. In further work we are examining the role of talk in these processes. 
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BEING SENSITIVE TO STUDENTS’ MATHEMATICAL NEEDS: 
WHAT DOES IT TAKE? 

Cettina Axiak
University of Malta 

This study is about student teachers using questioning to explore the mathematical 
reasoning of secondary school students aged between 11 and 14 years of age. The 
student teachers involved were first year students following a four years’ initial 
teaching training course in Malta. The Teaching Triad developed by Barbara 
Jarowski was used to analyze the students’ reports about their questioning.  Another 
aim of the work is to provide the student teachers themselves with a reflective tool for 
analyzing their own questioning. 

THEORETICAL CONSIDERATIONS 
The Teaching Triad, developed by Jarowski from an ethnographic study of 
investigative mathematics teaching, provides a useful method for analyzing teaching. 
The decisions inherent in teacher discourse are regarded as a complex interplay of 
decisions of three types; Management of Learning (ML), Student Sensitivity (SS) and 
Mathematical Challenge (MC). This model was later used to analyze the classroom 
interactions of other secondary school teachers (Jarowski & Potari, 1998) as well as 
those of university tutors working with their students (Jarowski, 1999; Jarowski, 
2002). In secondary schools, the emerging characteristics of effective teacher 
interventions involved a harmonious balance of SS and MC interventions. Through 
SS, the teacher is not only sensitive to the affective responses of the student (SSA) 
but is also sensitive to the students’ cognitive needs (SSC). In providing 
mathematical challenge, the teacher is prompting students to engage in mathematical 
thinking and possibly to develop such thinking. This model thus takes into account 
the social aspect of  the teaching/learning situation to include the important role of 
the teacher in directing such learning. Attention is directed to teachers’ planning and 
to their interventions intended to extend students’ mathematical thinking as well as 
those intended to sustain their interest. As it were, the teacher can be thought of 
tapping the students’ zone of proximal development as described by Vygotsky 
(1978).

What then is defined by the zone of proximal development, as determined through 
problems that children cannot solve independently but only with assistance? The zone of 
proximal development defines those functions that have not matured but are in the 
process of maturation, functions that will mature tomorrow but are currently in an 
embryonic state. These functions could be termed the “buds” or  “flowers” of 
development rather than the fruits of “development”.  (p. 86) 
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Treating the teaching/learning interface from the Formative Assessment perspective, 
Wiliam (1998), argues that support given to learners constitutes formative assessment 
only if the following five conditions are met: 

1. a mechanism exists for evaluating the current level of achievement; 
2. a desired level of achievement, beyond the current level (the reference level) is identified; 
3. there exists some mechanism by which to compare the two levels, establishing the 

existence of a gap; 
4. the learner obtains information about how to close the gap; 
5. the learner actually uses this information in  closing the gap.   (p.3) 

While both belonging to a tradition of  socio-constructivist research, the Teaching 
Triad model and Wiliam’s conditions for formative assessment focus on different 
aspects of the teaching/learning situation. Jarowski’s model accounts for an overall 
view of the teaching/learning situation, emphasizing the need for teachers to plan for 
learning, to be sensitive to their students’ cognitive and affective needs and to offer 
them mathematical challenge. On the other hand, Wiliam’s conditions zoom in on 
student sensitivity and mathematical challenge and explain how through student 
sensitivity cognitive decisions (SSC), the teacher helps provoke students’ 
engagement by providing appropriate mathematical challenge. Finally, Wiliam 
considers that formative assessment also includes that the learner uses such challenge 
to extend his/her achievement. 

THE PRESENT STUDY 
The quality of teachers’ questioning is undoubtedly one of the crucial factors 
affecting the quality of pupils’ learning. While in a teaching/learning situation, the 
use of questions can serve a multitude of purposes, the focus of this paper is limited 
to their use in evaluating pupils' thinking. In this study the use of student teachers’ 
questioning when working in a one-to-one interviewing situation is explored using 
the Teaching Triad as an analytic tool. This work aims to articulate  the strengths and 
weaknesses of different episodes of questioning intended to evaluate pupils' thinking. 
The student teachers themselves could also benefit from being involved in this 
method of analysis, in that they could use it as a tool in reflecting about their 
questioning.
The data used in this paper comes from an assignment given by the author to first 
year student teachers following a four-year initial teacher education course. These 
were asked to give a written test to a secondary school pupil1 aged between eleven 
and fourteen years. The student teachers were to use one of the tests on Fractions, 

                                          
1 Although the word “student” may be more appropriate here, in this paper, the secondary school 
students are being referred to as “pupils”. This is done so as to distinguish more clearly from the 
term “student teacher”. 
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Algebra or Measurement produced by the CSMS (Concepts in Secondary 
Mathematics and Science) team based at Chelsea College, University of London 
(Hart, 1981; Brown et al, 1984). After correcting their pupils’ work, the student 
teachers were to interview their pupils on some of the test items with the aim of 
exploring their pupils' mathematical reasoning and establishing, where possible, two 
gaps in their pupils’ understanding of the topics concerned. The student teachers were 
further directed to audio-tape their interviews and to write a report about their work. 
Emphasis was made that they were meant to probe into their pupils' reasoning and 
that they were not being asked to teach their pupils. 
The student teachers concerned were following a B.Ed. (Hons) course specializing in 
the teaching of mathematics at secondary level. In their first year, the focus of the 
mathematics course is mathematics content at an undergraduate level.  During this 
academic year, they also have a school observation course where they are assigned 
tasks of a general level that are not specific to mathematics teaching. By this time, 
they would not have had any formal teaching experience in mathematics as part of 
their course. For the forty student teachers concerned, the purpose of this work was 
an assignment following their first methodology course. This fourteen-hour course 
was delivered by the present author and involved discussions about  (i) the nature of 
mathematics education, (ii) behaviourist theories of learning,  (iii) socio-
constructivist views on mathematics learning and  (iv) talk in the mathematics 
classroom.
For the student teachers, the idea behind the assignment was to focus on an individual 
pupil’s reasoning prior to setting further activities in an attempt to further his/her 
mathematical thinking. The whole cycle of a teaching/learning process can be 
considered as including all the five of Wiliam’s conditions for formative assessment 
cited in the previous section. On the other hand, the student teachers’ work was 
limited to the first three of these. The test and the interview constitute the mechanism 
for determining the current level of achievement as well as identifying a desired level 
of achievement beyond the current level.  The student teacher was then to use this 
information in order to describe more fully, where possible, two gaps in the pupils’ 
knowledge.
In analyzing the excepts provided by the students, use was made of the Teaching 
Triad. Since the purpose of the students’ work was to explore their pupils’ reasoning, 
the analysis is focused on the student sensitivity exhibited by the student teacher in 
the cognitive and affective domains (SSC and SSA). Three excerpts from the student 
teachers’ interviews are discussed in the next section.

RESULTS
Case I 
When the student teachers were given the assignment, it was emphasized that the aim 
was to sort out their pupils’ thinking and for this reason, it was important for them to 
refrain from prompting the correct answers themselves. Still, some students ended up 
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prompting their pupils in this manner. A number of student teachers were lured into 
this strategy and after handing their assignments, a few students also claimed that 
they were tempted into prompting their pupils to get the right answer and found it 
very difficult to refrain themselves from doing so. One particular example is taken 
from Caroline’s work while she was interviewing Kathy on question 4 of the Algebra 
test (see Fig. 1). As with all other names used in this paper, Kathy and Caroline are 
not the real names. 

Fig 1: A reproduction of Kathy's written response to qn 4(ii)of the Algebra test
From the written script, Caroline noted that Kathy multiplied 8 by 4 and 3n by 4 
correctly but failed to get the correct answer in multiplying (n + 5) by 4. In fact, 
Kathy’s answer to this multiplication was 4n + 5. 

1 I: How did you work it out? 
2 K: Uff, I got confused there. See…4 times 8 equals 32…not so? 
3 I: Yes, go on. How did you work the one with 3n?
4 K: 3n times 4 equals… so 3 times 4 is 12 and there is n as well. So there is 12
5  times n equals 12n… yes? 
6 I: Ehe. What about the one in the middle? 
7 K: Well,  n + 5  times 4 is 4n + 5. Not so? 
8 I: If you had the first and last one (before multiplying by 4) what do you have? 
9 K: So the 8 and 3n plussed? 
10 I: Ehe. What happens? 
11 K: Not 8 + 3n?
12 I: So 8 + 3n  is the same as  3n + 8, no? So if we do 3n + 8 times 4, aren’t we
13  doing ( 3n times 4 ) plus ( 8 times 4). 
14 K: Ehe, so the answers are added … giving 12n + 32. 
15 I: Ok, so you are saying that 3n + 8 times 4 give…? 
16 K: 12n + 32. 
17 I: Right.  So when we had n + 5  times 4 – isn’t it  like you had (n times 4) +
18  (5 times 4)? 
19 K: Yes, I see. I understood! The answer is 4n + 20 
20 I: Fine. Well done! 

This excerpt in fact confirms that one particular gap in Kathy’s reasoning is the need 
for her to appreciate the property of distributativity of multiplication over addition, a 

4(ii). n multiplied by 4 can be written as 4n. Multiply each of these by 4: 
 8  n + 5  3n

32n  4n + 5  12n
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gap that was already apparent from the correction of Kathy’s script. The interview 
yielded nothing new about the cognitive meanings Kathy attaches to these algebraic 
expressions. Instead, Caroline gave Kathy a rule that could be applied in similar 
problems- a rule that in no way connects to other mathematical ideas. The affective 
response in the last two lines of the excerpt similarly reflect that both Caroline and 
Kathy were pleased with this outcome. Implicitly, the student teacher is here 
confirming what Kathy has already learnt, namely that getting the answer right is 
what counts. The uncertainty in Kathy’s first comment, “Uff, I got confused there”, 
remains unexplored. Why was she confused? Was she simply unsure of the answers 
or of some of them? Overall, Kathy is not being challenged to engage in any 
mathematical thinking further than the procedural thinking involved in knowing how 
to act in a similar situation. 
Case II 
In a number of student teacher assignments, the verbal prompts given by the student 
teachers suggest that the pupils’ initial method of solution of the set problems were 
completely disregarded by the student-teacher. A case in point is that of Stefan’s 
assignment who gave the Fractions Test to Maria.  Stefan chose to interview Maria 
on question 24  whose written solution to this question is shown in Fig. 2.  The 
excerpt from the interview regarding this question follows. 

Fig. 2. A reproduction of Maria’s written response to question 24  
1 I: Maria, look at this question (pointing to question 24 now. Why did you 
2   write 1/8, 1/8 and 1/8?
3 M: Heq… because  1/8, 1/8 and 1/8 and …emm, I don’t know! 

At this point in the assignment Stefan comments that it was evident that Maria was 
really confused and thus he decided to help her build her confidence. The interview 
continues: 

4 I: Maria, How many Lm2 (two maltese liri) are there in Lm10? (Stefan also 
5  wrote down the problem for Maria  on a piece of paper). 
6 M: Lm2, Lm2, Lm2, Lm2 and Lm2 (using her right hand to count). There are 5 
7  in all. 
8 I: Very good Maria, now explain to me how you can do this using 
9  multiplication or division 
10 M: Heq, 10 divided by 2 and the answer is 5. 
11 I: Yes, that’s right, Maria! … If now you have Lm 21/2  and Lm 121/2 instead 
12  of Lm2 and Lm10 (Stefan rubbed out the Lm 2 and Lm10 on the problem) 

24. A relay race is run in stages of 4
3 km each. Each runner runs one stage.

How many runners would be required to run a total distance of 8
1 km? 

      8
1

8
1

8
1
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13 M: The same… Lm121/2  division by Lm21/2.
14 I: That’s right. So if you need to find the fraction made by a quantity of another 
15  quantity you just need to apply the normal operations we use for 1,2,3,4,
16  …etc. Therefore in question 24, you just need to do 3/4 division by 1/8.
17 M: Yes! I was going to do it like that, that’s why I wrote 1/8 , 1/8 , 1/8 … but then 
18   I got confused. 

The first comment is about Stefan’s student sensitivity as far as the cognitive is 
concerned. Maria’s written response suggests that she was attempting repeated 
addition to solve the question (see Fig.2).  Similarly, Maria’s initial response to the  
to the whole number division problem (line 6) posed by Stefan follows the same 
strategy. By shifting away from Maria’s method towards the more formal division 
method, Stefan is closing down on the possibility of exposing why Maria got stuck 
with the repeated addition method when working on the fractions problem. Instead, 
as far as Maria’s mathematical processes are concerned, the interview does nothing 
more than to indicating even more strongly, that Maria’s initial strategy to question 
24 was in fact the use of repeated addition.
On the affective side, on seeing that Maria got confused, Stefan took over and 
gradually prompted “his” method for a solution. The stress that arose when  Maria 
got  confused is very understandable and it is clear that if one would like to explore 
Maria’s thinking more fully, it is necessary to learn how to handle such stress and 
utilize it in a positive manner. The next excerpt provides a clue on how this can be 
done.
Case III 

Fig 3: A reproduction of Pauline’s response to qn 3 of the Fractions paper.
In this excerpt, the interviewer, Sandra is asking twelve-year old  Pauline about her 
written response to question 3 of the Fractions paper. (see Fig, 3). 

1 I: Now… how did you work out number 3?  You can use rough work if
2  you like. 
3 P: The question… A piece of ribbon 17cm long has to be cut into 4  pieces. 

When cut,  I think it comes to … ( points to 4/17 cm)  four over seventeen. 
4 I: But why? Did you try to work it out? 

3.  A piece of ribbon 17cm long has to be cut into 4 equal pieces. 
Tick the answer you think is most accurate for the length of each piece.
(a) 4 cm, remainder 1 piece
(b) 4 cm, remainder 1 cm
(c) 41/4 cm 
(d) 4/17 cm X
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5 P: … Boqq… I forgot how I did it 
6 I: Ok, don’t worry… try it again. 
7 P: So, since I saw these two numbers (points to 4 and 17 in the question),
8  … I thought this was the answer  ( points to 4/17 cm). 
9 I: Ok. 
10 P: But if you think it out, it is four… you take the four times table, it is sixteen
11  not seventeen. So it is 4 cm remainder 1. 
12 I: Now do you think that 1 cm can be broken down into 4 pieces in some way? 
13 P: Eh…yes 
14 I: How long would each piece be? 
15 P: 0.2 
16 I: Try to add 0.2 for four times. 
17 P: You can cut out 0.2,0.2,0.3,0.3.        … interview continues.

In this case, the interviewer, Sandra is not prompting Pauline with an alternative 
method. There is an initial negative response from Pauline (line 5) when she says 
“…boqq… I forgot how I did it”. Here Sandra does not give up on unfolding 
Pauline’s ideas who reveals that she was in a sense guessing at an answer. The mere 
“O.k.” (line 9) in Sandra’s response implies an acceptance of Sandra’s thinking. This 
served her to think further and to come up with a more meaningful answer in her next 
response (lines 10-11). Sandra’s next question (line 12) again works with Pauline’s 
earlier construction of the string as 4 pieces of 4cm and 1 cm left over. Later on in the 
interview (not included here), Sandra discovers another of Pauline’s difficulties; she 
could not work out 0.5 � 2. 

DISCUSSION 
The high incidence of student teachers’ prompting of the ‘teacher’s method’ calls for 
comment. This is especially significant given the emphasis made that once the 
assignment called for exploration of the students’ reasoning, they were to refrain 
from prompting a solution to the set questions. There may be various reasons why 
prompting is so persuasive.  
For one, in their own learning experiences, these student teachers would have been 
heavily exposed to the traditional transmission method or the ‘teaching by telling 
method’ (Seegers & Gravemeijer, 1997). This behaviourist approach rests on the 
belief that learners are passive knowledge receivers and need to be told. 
Consequently the questioning is not directed towards what the pupils already know 
but at what is considered  that they should know. Another reason for prompting could 
be that the student teachers themselves were not sufficiently flexible in their 
mathematical thinking to allow them to recognize different possible methods of 
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struggling with the set questions. This is particularly relevant in this case because of 
the student teachers’ inexperience of teaching. 
A third reason emerges from the results of the three interviews discussed in this 
paper. Unlike the previous cases, there was no evidence of prompting in Case III. 
This interview stands out in the affective responses of the interviewer.  She reacted in 
a very positive way to the pupil’s frustrations and accepted that confusion and getting 
incorrect answers is part of the learning process. The focus was not that the pupil gets 
the correct answer at each stage, but rather that the pupil engages in thinking about 
her work. In short, she was showing profound respect for her pupil's mathematical 
thinking.
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A NEW PRACTICE EVOLVING IN LEARNING MATHEMATICS: 
DIFFERENCES IN STUDENTS’ WRITTEN RECORDS WITH CAS 

Lynda Ball and Kaye Stacey 
University of Melbourne 

Students who learn mathematics with CAS calculators are likely to develop new 
practices for doing and recording mathematics. Students discussed in this paper were 
able to use CAS calculators in examinations, making their own decisions about what 
to document as written records for solutions to problems. A comparison of some 
features of written records produced by these students, with an achievement matched 
random sample of students with only graphics calculators, gives insight into the new 
practice which is emerging. Students who had learned with CAS wrote generally 
shorter answers, used more ordinary words and used function notation more 
frequently but they did not over-use non-standard calculator syntax.
INTRODUCTION
When students learn mathematics with CAS calculators and can use it in 
examinations, they are likely to use a combination of CAS and pen-and-paper 
techniques, making decisions about which is more efficient based on previous 
experiences and personal competency with CAS and pen-and-paper techniques. 
Because intermediate steps in routine procedures carried out with technology are not 
available for inspection, students who use CAS cannot provide the reader (including 
an unknown examiner in a high-stakes examination) with the traditional form of 
written record of solution. A new mathematical practice is therefore likely to evolve 
in this situation. This paper reports a study of this evolving practice, by documenting 
four features of the written records provided in a high-stakes university entrance and 
final school examination, by a group of students using CAS and comparing them to a 
matched group of students not using CAS.  
There is little relevant literature. The strong literature related to argumentation and 
communication in mathematics classrooms (for example, Yackel, 2001; 
Krummheuer, 1995) has a focus on how students communicate mathematical 
thinking during classroom interactions, but is overwhelmingly concerned with verbal 
communication, dialogue and interaction. Our concern here is different because it 
deals with written communication of mathematical thinking and also because it is 
concerned, not with the process that students went through to solve problems, but 
with the end product, the written record, which is used to communicate a 
mathematical solution, in this case to an examiner. Literature dealing with the effects 
of CAS on teaching, learning and examinations has also not considered written 
records. An important thread in this literature (see for example, Artigue, 2002; Guin 
and Trouche, 1999; Pierce and Stacey, to appear) deals with the development of 
effective use of CAS in the classroom, but not how students communicate 
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mathematical thinking once CAS is used to solve problems. Similarly the literature 
related to assessment with CAS (see for example, Flynn, 2003; Kokol-Voljc, 2000) 
considers required changes to assessment items when intermediate steps are not 
available, but not how the responses should be written.
This paper will analyse four features of written records for selected problems in the 
2002 Year 12 externally set and marked Mathematics examinations in Victoria, 
Australia. The written records were produced by two cohorts of students, one that 
learned mathematics with CAS calculators and one that learned mathematics with 
graphics calculators. The CAS students were from three schools offering 
Mathematical Methods (CAS), a new subject (Victorian Curriculum and Assessment 
Authority, 2001) offered in Year 12 for the first time. The students had used CAS in 
both 2001 and 2002. Further details of their program and learning are available from 
the project web-site (www.edfac.unimelb.edu.au/DSME/CAS-CAT) and Stacey 
(2003). The other students were undertaking the standard subject Mathematical
Methods (VCAA, 1999). Examinations in both subjects were externally set and 
graded, with a number of common questions.  
Ball (submitted), a revised version of her 2003 CAME paper (see 
http://ltsn.mathstore.ac.uk/came), has previously reported differences in the written 
records of the CAS and non-CAS students for one of the common examination 
questions (Question 1b). She found that CAS written records tended to be shorter on 
average than non-CAS written records and that CAS written records contained more 
words than non-CAS written records. For example, Question 1b involved solution of 
two simultaneous equations and more than 40% of CAS written records (n=78) 
contained the word ‘solve’ while only one non-CAS written record (n=78) included 
this word. CAS written records also contained more function notation than non-CAS 
written records and there was evidence of some non-standard notation that could be 
directly linked to a CAS entry. From the analysis of Question 1b, it appeared that 
CAS students were developing a practice for writing mathematical solutions that had 
a number of differences to the practice being observed in the work of the non-CAS 
students. This paper will consider two more questions from the same examination 
and carry out a similar analysis to investigate whether the differences in written 
records observed in Question 1b are apparent in other questions. 
CAS AND NON-CAS STUDENTS 
During 2002 the students undertaking year 12 Mathematical Methods (CAS) learned 
mathematics with a TI89, HP40G or CASIO FX 2.0 CAS calculator and use of CAS 
was unrestricted in the final examination. These students are referred to as CAS 
students and their scripts as CAS scripts (see Table 1). Note that this is regardless of 
whether the student actually used CAS in the solution being analysed. Mathematical 
Methods students learned mathematics with a graphics calculator and could use it 
without restriction in the examination. These students are referred to as non-CAS 
students and their scripts as non-CAS scripts. Differences are summarized in Table 1. 
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 CAS student Non-CAS student 
Examination script CAS script Non-CAS script 
Subject studied Mathematical Methods (CAS) Mathematical Methods 
Technology used to 
learn mathematics 

CAS
(TI89, HP 40G, Casio FX 2.0) 

Graphics calculator 
(same brands) 

Techniques available 
for solving problems 
in examinations 

Pen-and-paper
Technology-(Graphical, 
Numerical and Symbolic) 

Pen-and-paper
Technology-(Graphical 
and Numerical) 

Table 1: Comparison of two cohorts of students 
CAS students were familiar with a rubric designed to guide practice for writing 
solutions in a CAS classroom. The RIPA rubric (Ball and Stacey, 2003) was created 
in response to students’ and teachers’ needs. RIPA promoted use of mathematical 
notation rather than calculator syntax and the recording of reasons (R), information 
and inputs (I), a plan for the solution path (P) and some answers (A) in written 
records. If students include reasons, a plan and calculator inputs (using mathematical 
notation) then we expect more words in students’ solutions. All teachers in the 
research project stressed the importance of clearly communicating written records. 
SAMPLE EXAMINATION SCRIPTS AND QUESTIONS ANALYSED 
The sample written records to be discussed are from the entire 78 Mathematical 
Methods (CAS) “examination 2” scripts and a stratified random sample of 78 Year 
12 Mathematical Methods “examination 2” scripts. The random sample of non-CAS 
scripts was matched to the achievement of the CAS scripts, as the purpose of this 
paper was not to compare the relative achievements of the two groups.
Questions 3i and 3ii (see Figure 1), common to both the CAS and non-CAS 
examination, are discussed in this paper and compared to results from the initial 
analysis (Ball, submitted) of Question 1b. Students needed to provide reasoning to 
show two given results and find the coordinates of a point of intersection of two 
graphs.
VCE Mathematical Methods (CAS) Pilot Study Examination 2 (abbreviated questions) 
Q 1:… According to Fitts’ Law, for a fixed distance traveled by the mouse, the time taken, in 
seconds, is given by a � bloge(x), 0 < x � 5, where x cm is the button width and a and b are positive 
constants for a particular user… 
Q1b. Mickey decides to find the values of a and b for his use. He finds that when x is 1, his time is 
0.5 seconds and when x is 1.5, his time is 0.3 seconds. Find the exact values of a and b for Mickey. 

Q 3: The diagram shows the curve whose equation is 4 3 21 (2 5 3 )
2

y x x x x� � � �  and the normal to 

the curve at A where x=1.[Graph shown with intersections at A and B]
Q3i. Show that the equation of this normal is y=x�1.5.
Q3ii. Show that this normal is a tangent to the curve at point B and find the exact values of the 
coordinates of B.

Figure 1: Examination questions analysed (Q1b, Q3i, Q3ii) (VCAA, 2002) 
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Analysis of these two problems enabled investigation of whether observed 
differences in features of written records for Question 1b were also apparent in the 
written records for these additional two common questions. This provides some 
insight into whether or not features of CAS written records appear as part of a new 
practice that students have developed for recording mathematical thinking or just in 
response to particular problems. 
Four features of written records 
Following Ball (submitted), the use of words and mathematical notation in students’ 
written records are categorised in two ways, as shown in Table 2. The length of 
written records was also measured, simply as the number of lines on the page that 
contained any working. It was also noted whether solutions used function notation 
(i.e. f(x)). As an example, the length of the written record in Figure 2 was seven. The 

line showing y = 1
2

 follows from the statement x=1 which shows that it is a separate 

line. The record is categorised as M� as it contains evidence of non-standard notation. 
The student has used � to indicate substitution and also given the CAS syntax 

solve 1( ( ) 1( 1), )
2

y x y� � � � in solving for y. The solution is classified as W because it 

contains words (importantly “solve”). It does not use function notation. More 
sophisticated measures and definitions did not seem to give different results to these 
simple ones and were harder to implement consistently.  
Code Written record 
M contains standard mathematical notation only 
M� contains some non-standard mathematical notation 
W contains one or more words that can be found in a dictionary 
W� does not contain any words that can be found in a dictionary 

Table 2: Codes for categories of written records (Ball, submitted) 

Figure 2: Example of written record containing non-standard notation 
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RESULTS AND DISCUSSION  
Use of standard and non-standard mathematical notation  
There were few instances of non-standard notation evident in the written records for 
the two problems (see Table 3). Q3i and Q3ii each had two occurrences of non-
standard notation in CAS solutions and Q3ii had one instance of non-standard 
notation in a non-CAS solution when a student recorded the name of the calculator 
program (FCTPOLY2) used to factorise a polynomial. There is no statistical 
difference between CAS and non-CAS students ( 2� corrected = 0.44, d.f. = 1, p = 
0.506). Non-standard notation given in CAS written records was in the form of a 
CAS instruction for solving or for substitution, both of which are shown in Figure 2. 
This limited use of non-standard notation was also reported by Ball for Q1b.

Features of Solutions Solutions to Q3i  Solutions to Q3ii 
 CAS NonCAS CAS NonCAS 
M+W 64 65 65 58 
M+W' 9 12 6 15 
M'+W 2 0 2 1 
M'+W' 0 0 0 0 
Written record contained:     
‘solve’ 4 0 22 1 
‘substitute’ 16 7 20 7 
‘simultaneous’ 0 0 1 0 
‘Define’ 1 0 0 0 
‘and’ 4 5 8 5 
‘equation’ 17 21 26 10 
function notation 13 10 15 9 

Table 3 Number of solutions exhibiting specified features of written records 
The results for the two questions discussed in this paper and previous analysis of Q1b 
suggest that most students are careful to use standard mathematical notation in 
recording their solutions even though they have learned mathematics with CAS and 
may have used CAS for various steps within solutions. In class, the non-standard 
notation we observed was generally of the nature of generic (not brand-specific) CAS 
syntax and as such is easily understood by someone with a mathematical background. 
We expect that some of these currently non-standard notations may become standard. 
Length of written records 
The lengths of written records for Q3i and Q3ii are shown in Figures 3 and 4. Q3i 
had a number of shorter CAS written records. The average length of written records 
for each question (n=78 for each) was found to be significantly greater for non-CAS 
students in Q3i (CAS 5.5, Non-CAS 8.3, t=6.4, d.f.= 154, p=0.000) but almost the 
same for the two groups of students in Q3ii (CAS 6.9, Non-CAS 7.0). For Q1b 



www.manaraa.com

2–92  PME28 – 2004

(n=78) the average length was found to be greater for non-CAS written records (CAS 
5.2, Non-CAS 7.2). If we only consider written responses of students that responded 
to the task (i.e. not length 0), the same results still hold.  These results reflect the fact 
that CAS students are able to perform intermediate routine steps with CAS. This is an 
important consideration for teachers and students because in these examinations 
students need to communicate enough appropriate working to access intermediate 
marks if their final answer is incorrect. The CAS students in this study were aware 
that examiners needed to be able to follow the working documented in written 
records. This sort of consideration will mould evolving practice. 

Number of CAS scripts L Number of Non-CAS scripts 
          3 0 1     
          2 1     
          2 2 1     
      8 3 3     

14 4 1     
5 3     

13 6 1 0 
    10 7 1 2
       7 8 1 3
        5 9 8
          1 10 1 3
          11 1     
          12 6     
          1 13 2     
          1 14 2     
          15 2     

Figure 3 Lengths (L) of CAS and non-CAS written records for Q3i 
Number of CAS scripts L Number of Non-CAS scripts 

5 0 4     
         2 1 5     

5 2 2     
         2 3 5     

6 4 3     
         2 5 6    

7 6 7
8 7 7

1 1 8 4     
1 2 9 7

1 0 10 1 2
6 11 1 0

         2 12 5     

Figure 4 Lengths (L) of CAS and non-CAS written records for Q3ii 
Use of words  
For Q3i and Q3ii, the percentage of written records containing words was greater for 
students who learned mathematics with CAS than for non-CAS students. Combining 
the data in Table 3 for both questions shows 89% of CAS solutions and 82% of non-
CAS solutions contained words, a notable overall difference ( 2� corrected =3.10, 
d.f.=1, p=0.078). Overall, the high usage of words and in particular use of the word 
“solve” would suggest that access to CAS is impacting on the written records and 
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possibly also the way in which students think about mathematical commands. The 
words used in CAS and non-CAS records had interesting differences. Non-CAS 
written records tended to contain the words “substitute”, “and”, or “equation” – this 
is familiar to us, but we had not noticed the restricted range of words until this study. 
Surprisingly, use of the word “solve” was mainly observed in CAS written records 
with nearly 30% of CAS written records for Q3ii including this word but few non-
CAS records. The use of “solve” in CAS written records could be attributed to a 
number of factors. We have observed that students often write this word when they 
are recording CAS syntax. We propose that these students may be thinking about 
solving at a more global level than non-CAS students. Non-CAS students need to 
attend to the intermediate steps of a solution, rather than thinking about “solving” 
overall. For example, to solve a quadratic equation they may first consider rewriting 
it so that they have a quadratic expression equal to zero, then make an attempt to 
factorise the quadratic expression and so the focus would be on factorizing rather 
than thinking about the overall process which is solving. A CAS student can just 
recognise that they need to solve.
Use of function notation 
CAS written records also contained more use of function notation than non-CAS 
written records for both questions (see Table 3), although the difference is not 
statistically significant ( 2� corrected =1.95, d.f.=1, p=0.163).  Given that these 
results occurred for all three questions, this could indicate a new practice for 
recording. It probably results from the ease of use of function notation with CAS, and 
the technical benefits of defining functions explicitly for subsequent solving, 
substituting etc. CAS students may get into the habit of recording a function using 
function notation initially in their written records to facilitate later use of the inbuilt 
“define” feature in the solution, and hence access to simplified CAS input.  
CONCLUSION
The analysis of an additional two questions generally supports the observations of 
Ball (submitted) that CAS solutions will generally be shorter than non-CAS 
solutions, that they will contain more words and use function notation more. Some 
changes may occur in the mathematical notation that is regarded as acceptable, but 
there need be no fears that students will replace standard notation by 
incomprehensible machine-speak. There is evidence that a new mathematical practice 
is evolving with this tool. Teachers and others need to actively guide this evolution in 
desired directions. 
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EMPOWERING ANDREA TO HELP YEAR 5 STUDENTS 
CONSTRUCT FRACTION UNDERSTANDING1

Annette R Baturo
Centre for Mathematics and science Education 

Queensland University of Technology, Brisbane, Australia 
This paper provides a glimpse into the positive effect on student learning as a result of 
empowering a classroom teacher of 20 years (Andrea) with subject matter knowledge 
relevant to developing fraction understanding. Having a facility with fractions is 
essential for life skills in any society, whether metricated or non-metricated, and yet 
students the world over are failing in this aspect of mathematics (Queensland Studies 
Authority, 2002; TIMSS, 1997). Understanding fractions requires comprehension and 
coordination of several powerful mathematical processes (e.g., unitising, reunitising, 
and multiplicative relationships) (Baturo, 1997, 2000). While this paper will report on 
student learning outcomes, its major focus is to tell Andrea’s story and from this to draw 
implications for pre-service education and teaching. 
INTRODUCTION
Andrea, who was teaching in a small rural town in Queensland, was a brilliant 
practitioner. Using Askew, Brown, Denvir, and Rhodes’s (2002), parameters for 
evaluating classroom interactions; I rated her at the highest level in each of the four 
parameters (Tasks, Tools, Talk, Expectations and Norms). Andrea had developed a truly 
remarkable community of mathematics inquiry where interest and engagement were 
often sustained in thought-provoking tasks in whole-class situations. Her principal, 
colleagues, and parents all attested to her teaching credibility. 
I was privileged to observe an impromptu discussion which was initiated by a student 
who asked which was larger in value – 0.3 or 1/3. Andrea’s response was to write both 
numbers on the board and ask: Can we tell by just looking at the numbers? The 
students replied in diverse ways; some said yes; some said no, one said 1/3 is bigger 
because its bits are bigger, while another said 1/3 is bigger because you can put it into 
ninths. Andrea didn’t tell the latter student that his thinking was inappropriate but 
drew, on the board, a rectangle which she partitioned into ninths, asking: What has 
this been partitioned into? What can I do to show thirds? [By doing this she showed 
she was looking for reunitising.] She accepted responses from students but validated 
them with the remainder of the class, thus setting up a debate. Finally, the class 
agreed on appropriate shading to show 1 third, which Andrea followed by asking: 
Does this help us compare 1 third with 3 tenths? Discussion drew from the students 
that “the same” (congruent) wholes would be needed to compare thirds and tenths. 
Only then did Andrea throw the problem back to the students to either work alone or 
in groups to come up with a solution.  
1This study is part of a much larger study supported by the Department of Education, Science and 
Training, Canberra, Australia.
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The students were “riveted” by Andrea’s style of questioning and were eager 
participants in the discussions. No child was made to feel embarrassed by any response 
s/he made; in fact, Andrea made inappropriate responses the basis for her line of 
questioning by throwing the responses back to the class for consideration and 
amendment. However, even though Andrea was an excellent teacher with very good 
pedagogic knowledge, she was unable to help her students construct part/whole
fraction understandings that were robust enough to apply to a variety of tasks (see 
Figure 1) until she, herself, understood the structural basis of the topic and gained 
specialist techniques that relate to such structural understanding.
BACKGROUND AND THEORY 
Fundamental to the part/whole fraction subconstruct is the notion of partitioning a 
whole, whatever its representation, into a number of equal parts and composing and 
recomposing (i.e., unitising and reunitising) the equal parts to the initial whole. 
According to Kieren (1983), partitioning experiences may be as important to the 
development of rational number concepts as counting experiences are to the 
development of whole number concepts. Students, therefore, should be provided with 
several opportunities to partition a variety of fraction models in a variety of ways so 
that they come to understand that ½ (for example) always represents one of two equal 
pieces. Partitioning, unitising and reunitising are often the source of students’ 
conceptual and perceptual difficulties in interpreting rational-number representations 
(Baturo, 1997, 1999, 2000; Behr, Harel, Lesh & Post, 1992; Kieren, 1983; Lamon, 
1996; Pothier & Sawada, 1983). In particular, reunitising, the ability to change one's 
perception of the unit (i.e., to also see one whole partitioned into 10 equal parts as 
five lots of 2 parts and two lots of 5 parts), requires a flexibility of thinking that is 
often too difficult for some students.
Therefore, the secret to constructing a robust knowledge of the part/whole 
subconstruct is experience with: (a) partitioning and unitising in a variety of 
situations; (b) the two-way process of partitioning and unitising (i.e., constructing 
two-fifths when given one whole and constructing one whole when given two fifths); 
and (c) examples of wholes and partitioning that require reunitising (i.e., constructing 
three-tenths from a whole partitioned into fifths and constructing four fifths from a 
whole partitioned into tenths). The first of these experiences is based on developing 
fraction structural knowledge (Sfard, 1991) which requires teaching strategies 
focusing on the notion of unit/whole, partitioning the whole to form equal parts 
(Lamon, 1996; Pothier & Sawada, 1983), and repartitioning the whole to form 
smaller equal parts and to reconstruct the unit (Baturo, 2000; Behr, et al., 1992).The 
latter two experiences are achieved by the generic teaching processes of reversing
(Krutetskii, 1976; RAND, 2003) and representing the concepts by both prototypic
and nonprototypic models (Hershkowitz, 1989).
In this paper, I describe and analyse the changes in Andrea’s knowledge and teaching 
practices and in the learning outcomes of her students that were a consequence of 
Andrea’s gaining the structural knowledge and generic techniques above. This is 



www.manaraa.com

PME28 – 2004  2–97

done in order to unpack the crucial components of this teacher knowledge that had 
the positive effect on student outcomes. The project from which this paper emerged 
involved eight other mathematics-education academics and I working with eight 
schools across Queensland in order to identify those factors that enhance student 
numeracy outcomes. The schools were chosen on the willingness of three to five of 
their teachers to be involved in the year-long project, which was essentially a model 
of professional development-in-practice (i.e., in authentic classrooms). We worked 
with these teachers in their classrooms on topics that the teachers themselves had 
identified as problematic. For some teachers, this may have been related to generic 
pedagogical concerns (e.g., improving mathematics engagement). However, the three 
teachers in my school each identified aspects of mathematics that their students were 
failing to understand. Andrea nominated the part/whole fraction subconstruct as the 
area in which she felt that she was unable to teach effectively.  
THE STUDY 
The methodology I adopted for this study was mixed method, a combination of 
quantitative research on student outcomes and qualitative and interpretive research on 
Andrea and her class as a case study. The subjects were Andrea and her Year 5 
students and the Year 5 students of a control (comparison) school that was selected to 
match as closely as possible the various characteristics of Andrea’s class, school and 
community.  
Data gathering methods. The data gathering methods I used were observation, 
interviewing and testing. To explore the process by which Andrea and her class 
changed their teaching and learning, I observed and videotaped the classes in which 
she taught fractions and talked to her regularly. To identify growth in fraction 
knowledge, Andrea and I administered a fraction pre-test in mid April (beginning of 
Term 2) and post-test in late June (beginning of Term 3). To determine the effects of 
the academic-teacher collaborations, Andrea and I administered a standardised test 
covering Number and Space (Part A) and Measurement (Part B), and a research-
developed instrument covering Chance at the beginning and end of the year. The 
results from these classes were compared with those from a comparison school to 
identify changes in outcomes above those due to maturation.  
I developed the fraction test (see Appendix) because the standardised test was not 
sufficiently detailed in the domain of fractions to provide insights into Andrea’s 
students’ specific cognitive difficulties. I needed an instrument that took cognisance 
of the major fraction concepts and processes, and the generic processes of reversing 
and representing with prototypic and non-prototypic models.  
Fraction test analysis. Items 1, 2, 3a, 3c, 3e, 4 and 5a were designed to assess the 
students’ ability to identify (unitise) fractions from a variety of representations of the 
whole (area, set, and linear models). Since the area models had been taught in Year 4 
and the set and linear models were novel for these students, I expected that the students 
would perform worst on the set representations of the whole as many students find it 
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difficult to hold a discrete set of objects in the mind as one whole. Items 3b, 3d, 3f, and 
5b were designed to assess the students’ ability to reunitise fractions represented by area, 
set, and linear models. Items 3b and 5a required the repartitioning of the given equal 
parts whilst 3d and 3f required a recombining of a larger number of equal parts into a 
smaller number of equal parts.  
Items 6, 7, and 8 were designed to assess the students’ ability to construct the whole 
when given the part (i.e., reversing). All other items had provided the whole partitioned 
into parts. Items 6 and 7 involved area representations. Although Item 6 involved a unit 
fraction, this was made more difficult by including two parts to be considered as the unit 
part. Item 7 was a non-unit fraction and required the students to identify the unit part. 
Item 8 was quite difficult as it involved a set representation of a non-unit fraction. 
Procedure. After the tests had been administered, I met with Andrea  to plan her unit 
and provide her with information for this planning. The lesson plan sequences were 
developed collaboratively by Andrea and me and then detailed by Andrea (Baturo, 
Warren, & Cooper, 2003). Emphasis was placed on the need for Andrea to develop her 
own activities specific to the topic.  
Overarching the planning sequence was my (Baturo, 1998) teaching and learning theory 
which encompasses entry knowledge, representational knowledge, procedural 
knowledge, and structural knowledge. The use of appropriate materials to help students 
construct mental models was incorporated and reversing activities (e.g., “This is the 
whole; what part/fraction is represented?” and “This is the part/fraction; construct the 
whole.”) and nonprototypic representations were included to develop robust knowledge. 
It was agreed that Andrea would include activities involving 10 and 100 equal parts in 
order to strengthen her students’ understanding of decimal fractions.  
RESULTS
I analysed Andrea’s students’ test responses descriptively and statistically, reread the 
observation field notes and viewed the videotapes, and combined the data to make a 
rich description of Andrea’s progress.
The collaboration. The first activity was the development of the fraction test to 
determine Andrea’s students’ Entry knowledge (Baturo, 1998). As soon as Andrea 
saw the developed instrument, she knew immediately the importance of the reversing 
and nonprototypic representations, exclaiming: That’s what I’ve been missing! Thus. 
Both the instrument and the students responses (which were poor in significant areas 
– see Figure 1) became excellent springboards for discussion of the teaching 
sequences for developing fraction understanding. As a consequence, Andrea spent 
most of Term 2 almost exclusively on re-teaching the fraction concepts, focusing first on 
partitioning a variety of prototypic and nonprototypic wholes, and then reunitising area, 
set, and linear models including nonprototypic representations of the whole and the 
parts, as well as on reversing activities (i.e., whole�part; part�whole). However, she 
found that her students were unable to process set models so these were delayed until the 
end of the year. Her excellent pedagogy skills combined with the more sophisticated 



www.manaraa.com

PME28 – 2004  2–99

techniques and richer representations that emerged from the joint planning meant that 
she was able to challenge her students’ understanding at a greater depth than before. 
The test results. The results of the items and sub-items (see Figure 1) show that the 
students initially exhibited impoverished knowledge in Items 1, 3b, 3f, 5a, 5b, 6, 7, 
and 8; however, as Figure 1 also shows, these greatly improved by the post-test.  

Figure 1. Pre and post means for Andrea’s Year 5 students with respect to the 
fractions test. 

The increase in students’ outcomes across the collaboration was also evident when I 
restructured the data according to the major process being assessed. Table 1 provides 
class and overall means (%) for the unitising items while Table 2 provides means (%) 
of the items related to reunitising, and reversing.

Table 1: Means (%) for All Unitising Items in the Fractions Cognitive Diagnostic Test

Unitising Items Individual Students’ Means (%) and Overall Mean (%)  

1 2a b c d 3a c e 4 5a
Overall
Mean

Pre 52 100 86 95 67 100 100 71 81 38 79 
Post 91 100 95 100 91 100 100 76 86 62 90 

Table 2: Means (%) for All Reunitising and Reversing Items in the Fractions Cognitive 
Diagnostic Test

Reunitising & Reversing Items Individual Students’ Means (%)  
and Class Mean (%)  

Reunitising Item Reversing Items 

3b 3d 3f 5b
Class
Mean 6 7 8

Class
Mean

Pre 52 86 52 05 49  48 62 43 51 
Post 67 91 67 76 75  76 62 52 64 

Figure 2 shows the pre and post common and decimal fraction means (taken at 
February and November respectively) with respect to the standardised test 
administered to all classes in the larger study. Pair-wise comparisons undertaken with 
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the pre/post results revealed that the increased performance was significant for 
common fractions (p = 0.000) and for decimal fractions (p = 0.004). The post means 
also supports the supposition that the learning that occurred in Term 2 was robust for 
common fractions and flowed on to decimal fraction understanding. 

Figure 2. Pre and post standardised test means for Andrea’s Year 5 class with respect 
to common fractions and decimal fractions.  

With respect to relative performance on the standardised test with the comparison 
class, the pre-test scores were reasonably close indicating comparative starting 
achievement. Multivariate tests revealed a significant difference (0.05) between the 
classes with respect to improved performance from pre to post when pre total score 
was used as a covariate to control for different levels of pre performance across the 
schools. Pairwise comparisons revealed that Andrea’s Year 5 students demonstrated 
greater improvement in learning than the comparison Year 5 students from pre to post 
overall and on Part A and Part B of the standardised test. 
DISCUSSION AND CONCLUSIONS 
The improvement in Andrea’s class from pre- to post-tests was remarkable, more 
than doubling the class average. This was much higher (over double the increase) 
than all but one other class (also at this school) of 40 classes in the larger project 
(Baturo, Warren & Cooper, 2003). This result is strong evidence of the following. 
First, improving teachers’ mathematics knowledge is a powerful method to enhance 
students’ mathematics learning outcomes if the teachers have strong pedagogy 
(RAND, 2000). Second, the improvement in teachers’ mathematics knowledge has to 
be in understanding of structural knowledge (Baturo, 1998; Sfard, 1991), the big 
ideas of mathematics, and in the generic teaching processes such as reversing and 
nonprototypic representations (Hershkowitz, 1989; Krutetskii, 1976; RAND, 2000), 
the big ideas of mathematics pedagogy. Third, the cognitive difficulty of topics such 
as the part/whole fraction subconstruct are points at which students, even with good 
teachers, can fail, but this can be remedied by the techniques in this paper. Fourth, the 
importance of Entry and a good assessment instrument cannot be overlooked – they 
provide the foundation for teaching as well as assessment. Last, the story of Andrea 
shows that good teachers are not necessarily those who know, but are those who can 
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recognise and utilise powerful ideas when they see them. The support they need is the 
inclusion of these ideas in their daily teaching.
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APPENDIX
C0GNITIVE DIAGNOSTIC COMMON FRACTIONS TEST 

B

GE
H

K

A
F

C D

JI L

1   Tick the shapes below that have been divided into quarters.

2   Write the fraction that shows how much of each shape has been shaded.

3  Colour each shape and set to match the given number.
8/8 1/3 1/3 of the bunch

of cherries
1/3 of the set

of triangles
23/4 pies 13/4 sets of marbles

S
S

S

S S S

S S

S
S

S

S S S

S S
0 1 2 3

4  Show 21/4 on the number line.

5  Write A to show where 6/3 is on the number line below and write B to show where 11/6 is.

0 1 2 3 4

6                       This is 1/4 of a ribbon. Draw the whole ribbon.

7 This is 2/3 of one of the rectangles below.
Tick the correct rectangle.

8       This is 3/5 of  a
set of marbles. 

Draw the set 
of marbles. 
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1   Tick the shapes below that have been divided into quarters.

2   Write the fraction that shows how much of each shape has been shaded.

3  Colour each shape and set to match the given number.
8/88/8 1/31/3 1/31/3 of the bunch

of cherries
1/31/3 of the set

of triangles
23/4 pies23/4 pies 13/43/4 sets of marbles

S
S

S

S S S

S S

S
S

S

S S S

S S

S
S

S

S S S

S S

S
S

S

S S S

S S
0 1 2 30 1 2 3

4  Show 21/4 on the number line.

5  Write A to show where 6/3 is on the number line below and write B to show where 11/6 is.

0 1 2 3 40 1 2 3 4

6                       This is 1/4 of a ribbon. Draw the whole ribbon.

7 This is 2/3 of one of the rectangles below.
Tick the correct rectangle.

8       This is 3/5 of  a
set of marbles. 

Draw the set 
of marbles. 
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UNDERSTANDING INVERSE FUNCTIONS: 
THE RELATIONSHIP BETWEEN TEACHING PRACTICE AND STUDENT 

LEARNING
Ibrahim Bayazit and Eddie Gray 

Warwick University 
This study is a part of an ongoing research that attempts to explain the relationship 
between the teachers’ instructional practices and students’ learning in the context of 
functions. In this paper we report a case that shows significant differences between 
the achievements of two classes irrespective of the students’ background training, the 
curricula taught, and the geographic or socioeconomic variables. Cross examination 
of the data suggest that these differences are attributable to the teachers’ 
instructional practices.
Introduction
The influence of the teachers’ instructional practices on students’ learning has 
prompted considerable interest (see for, example, Brophy & Good, 1986; Leinhardt & 
Smith, 1985). Directing this interest is the belief that teachers play an active and 
direct role in the students’ acquisition of knowledge. During the 1970s teacher’s 
effectiveness was measured in a quantitative way through the analysis of data 
associated with the courses taken by the teachers during their undergraduate studies 
or with teachers’ scores on standard tests (Fennema & Franke, 1992; Wilson, 
Shulman & Richert, 1987). Such an approach is often criticised and found deficient 
because it is not associated with the situation where the teaching and learning take 
place.
More recently there has been a tendency to use qualitative research to investigate 
teacher efficiency in producing desired learning outcomes (Leinhardt & Smith, 1985; 
Askew, Brown, Rhodes, William, & Johnson, 1996). Leinhardt & Smith reported that 
expert teachers who had deep understanding of the concept of fraction obtained better 
learning results with their classes than did novice teachers. Teaching approaches of 
the latter was characterised by the provision of procedural examples and explanations 
but an absence of explicit links between different aspects of the concept. Askew et al
concluded that the students of teachers who provided conceptual explanations and 
identified links between the sub-concepts (connectionists) obtained relatively better 
learning results in comparison to those students whose teachers encouraged them 
discover mathematical ideas and principles by themselves or those who were the 
recipients of dispensed knowledge. This paper takes the interest further by examining 
the way in which two Turkish teachers introduce the concept of inverse function and 
relates this to the students’ understanding of the notion. 
Theoretical Framework  
Our study is situated, in general, in the process-product paradigm. To examine the 
teachers’ instructional practices we draw upon Shulman’s (1986) notion of pedagogic 
content knowledge “the ways of representing and formulating the subject that makes 
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it comprehensible to others” (p: 9). He suggests that such knowledge also includes 
the teachers’ understanding of what makes the learning of certain topic easy or 
difficult for students, an understanding of the conceptions and preconceptions that 
students bring with them to the lessons and an awareness of students’ 
misconceptions. We explain students’ learning with reference to the APOS theory 
hypothesised by Dubinsky (1991) although we use only the first two aspects of this 
notion since we will show that the students did not appear to proceed to an object 
conception of inverse function. Dubinsky’s notion of action refers to the repeatable 
mental or physical manipulations implemented upon an object to obtain a new one 
(Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas, & Vidakovic, 1996). In our 
context those students whose understanding is limited to the action conception would 
work out the rule of inverse function by inverting the process of a function step by 
step. A process conception of a mathematical idea is attained through interiorising 
actions, and this level of understanding enables students to have a conceptual control 
over a process without necessarily performing every step in that process 
(Breidenbach, Dubinsky, Hawks, & Nichols, 1992). In our case, those who attained a 
process conception are likely to deal with the concept of inverse function in the 
situations that do not involve an operational formula.    
The Notion of Inverse Function—The Turkish Context 
The Turkish mathematics curricula within which our study is situated presents the 
concept of inverse function through a definition: “Consider that f and g are two 
functions. If (f�g)(x)=I(x)�f is the inverse function of g and g is the inverse function 
of f”, and symbolises this relation as f-1(x)=g(x) and g-1(x)=f(x) (Cetiner, Yildiz, & 
Kavcar, 2000). This definition involves the idea that ‘an inverse function undoes 
what a function does’. In this sense, the notion of ‘undoing’ captures the underlying 
domain of inverse function (Even, 1991). The property of ‘one-to-one and onto’ is the 
basic criterion that a function must meet to be reversed. What makes this cognitively 
simple mathematical idea difficult for many of the students is the peculiarity of the 
representations. Whereas Venn diagrams, sets of ordered pairs, and Cartesian graphs 
are more able to elucidate the essence of this concept, the absence of an algebraic 
formula in such situations usually creates difficulties for the learners unless they have 
attained a process conception (Dubinsky & Harel, 1992). We believe that algebraic 
expressions are likely to shift the focus of attention from the notion of ‘undoing’ to 
the idea of an ‘inverse operation’ entailing the inversion of a sequence of algorithms 
in the process of a function by going from the end to the beginning. 
Method
This study was conducted in Turkey. The research participants were two high school 
teachers, Ahmet with 25 years teaching experience and Mehmet with 24 years 
teaching experience (the names are altered), and their 9th grade students. Data about 
the teaching practices were obtained through classroom observations. Each teacher 
was observed teaching the concept of inverse functions. All the lessons were audio 
taped and field notes were taken to record the critical information as well as the 
visual aspects of the lesson that the audiotape could not detect. Data about the 
students learning comes from two sources: pre-test and post-test questionnaires. 
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Preceding the courses a pre-test questionnaire was administered to the students to 
assess their initial levels of understanding of function, in general, and inverse 
function, in particular. After completion of the course a post-test was conducted to 
observe the progress students had made as result of the instructional treatment. The 
questions presented in this paper were used in the questionnaires in an open-ended 
form to encourage the students to write down their actual reasoning about the 
problems at hand.   

Results
The results are presented in two ways. First we consider the overall approaches of the 
two teachers in teaching the concept of inverse function, and secondly we consider 
the responses of students from each of their classes (Ahmet Class A and Mehmet 
Class B) to two questions that focus on the notion of the inverse function.
The two teachers display substantial difference in their approaches to the essence of 
the concept, and this manifests itself in every aspect of their instructional discourse. 
Ahmet’s teaching is centred on the notion of ‘undoing’. In this respect, his first and 
purposeful attempt is to strengthen the students’ understanding of ‘one-to-one and 
onto’ condition before the formal instruction. Diversity as well as development in the 
use of representations that started with Venn diagrams and went through a sequence 
that included the use of sets of ordered pairs, graphs, and algebraic expressions, were 
indicators of his expertise and essential to his determination to align the logic of the 
concept to the students’ comprehension. Connections between ideas as well as 
between representations were a distinctive feature of his instruction. Ahmet’s 
teaching was exemplified by his tendency to encourage his students to examine the 
concept through conceptually focused and cognitively challenging tasks. He believes 
that algebraic expressions, especially linear ones, are not productive to explicate the 
essence of an inverse function.
In contrast, Mehmet’s teaching could be described as action oriented practices. He 
focused on teaching algorithmic skills and the acquisition of procedural rules. As his 
teaching developed, it became clear that these rules and skills were regarded by him 
as essential in enabling his students to reverse an algebraic function. However, such 
skills didn’t help them to meaningfully deal with the concept in various situations. He 
made use of the students’ previous knowledge and offered several analogies from 
daily life situations to encourage the students’ acquisition of these procedural skills. 
Cartesian graphs and sets of ordered pairs were absent in his teaching. The ultimate 
goal of his instruction appears to be the alignment of the logic of ‘inverse operation’ 
to the procedural knowledge of ‘doing’ (“Find the inverse of…”), but not the 
conceptual knowledge of ‘undoing’. To reach this target he worked on ritual tasks 
and consistently provided procedural explanations through the implementation of a 
‘focused questioning teaching strategy’.
From full analysis of the data we summarise the critical aspects of the teachers’ 
instructional practices in the table below.
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                        Ahmet                        Mehmet 
Preliminary Consideration 
Prepared students for the concept of 
inverse inverse function before formal 
introduction
Introduction
Explained the necessity of ‘one-to-one’ 
and ‘onto’ condition with reference to the 
definition of the function and through 
several examples in the form of Venn 
diagrams…  

Provided several analogies from the 
daily life situation to explain the way 
of inverting a sequence of operations 
in  the process of the function… 

Development
Examined the concept of inverse function 
a through the Venn diagrams, sets of 
ordered pairs, graphs, and algebraic 
expressions…

Concept examined through Venn 
diagrams and algebraic expressions. 
Sets of ordered pairs and graphs 
ignored.
With reference to the definition used a 
single example in the form of Venn 
diagram to explain the necessity of 
‘one-to-one and onto’ condition. 

Expansion
Making use of the students’ knowledge 
of ‘inverse operation’ when teaching 
linear functions in algebraic forms… 
Attempted to expand the students’ 
understanding of inverse function as 
‘undoing’ what a function does through 
conceptually focused and cognitively 
challenging tasks… 

Did not engage students with 
conceptually focused and cognitively 
challenging tasks… 
Largely confined the notion of inverse 
function to the idea of ‘inverse 
operation’…

Pedagogical Characteristics 
Displaying a mixed approach 
(connectionist & discovery) as a teaching 
strategy…

Implementing a focused questioning 
method as a teaching strategy…  

Table 1: Salient aspects observed in teachers’ instructional practices. 

Prior to the course all of the students were asked to demonstrate their ability to 
reverse a process after being given a particular output (5) after completing the 
processes x3, –7. Only one student gave an incorrect solution. Solution methods of 
the students who obtained correct answers were almost equally distributed between 
the formation of an algebraic equation or an inverse operation. Differences in the 
students’ understanding after the course may be seen through the analysis of two 
questions. The first assesses students’ understanding of the notion of ‘undoing’ and 
the property of ‘one-to-one and onto’ whilst the second investigates their ability to 
deal with the concept of inverse function in a graphical situation.

The First question asked the students to:
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Consider two non-empty sets, A = �a, b, c, d� and B = �e, f, g�. Is it possible to 
define a function from A to B, say f, that has an inverse function, say f-1? Give your 
answer with the underlying reasons.
Within this question there is neither an explicit recipe nor a visual figure to facilitate 
the students’ movement between the sets of elements. They had no choice other than 
to construct a process in the situation without losing the meaning of inverse function 
and the related properties. Five different responses were produced (see table 2). 

Table 2: Distribution of the answers by methods used and correctness. 

Incorrect verbal explanations did not make sense or articulated an idea that illustrated 
a misunderstanding the concept of inverse function — “…we cannot define such a 
function, because the sets A and B do not have a common element.” The common 
error in the second type of answers is about the univalence condition. Although 
students who made this error flexibly shifted to visual figures, mainly Venn diagrams, 
they either constructed a ‘one-to-one’ relation from A to B and then claimed that it 
has an inverse function, or defined a proper function from A to B ignoring the 
univalence condition on the way back. One third of students in Class B (Mehmet’s 
class) provided incorrect explanations though they worked on a visual figure. Only 
one in Class A (Ahmet’s class) did so. Approximately one quarter of the total number 
of students appear to have a cognitive control over the processes in both ways. These 
students explained verbally why the construction of such a function is not possible 
with a clear articulation that ‘an inverse function undoes what a function does’ with a 
particular emphasis upon ‘one-to-one and onto’ condition. They did not use a visual 
figure to justify their thoughts. However, again class differences appear. For each 
student who displays this characteristic in Class B there are two students in Class A. 
The last group of answers also indicates the recognition of what an inverse function 
does and the property of ‘one-to-one and onto’. However, though it is difficult to 
make a decision about the mode of students’ thinking on the basis of written 
responses, it is inferred, from the evidence presented, that these students were 
dependent upon a visual figure to think about the problem.   

The second question that we will consider was presented in graphical form.  

      Class A       Class B
n % n %

Incorrect (verbal explanation) 5 18 1 4
Incorrect (verbal explanation & corresponding figure) 1 4 9 33
No response 3 11 3 11
Correct (verbal explanation) 10 36 5 19
Correct (verbal explanation & corresponding figure) 9 32 9 33
Total (N)       28 27
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fThe graph of function f is given as 
follows. Sketch the graph of inverse 
function,   f –1, in the Cartesian space 
below, and give the reasons for your 
answers.

Excluding those who gave no response this question produced three types of answers 
(see table 3) 

Table 3: Distribution of answers by methods used and correctness. 

Incorrect responses involved several types of misunderstandings, such as sketching a 
line passing through the points (2, 0) and (0, 1) on the x and y-axes respectively, 
sketching the graph given as the graph of an inverse or reflecting the graph of the 
function given in the y-axis. Note that almost two thirds of class B gave an incorrect 
response or no response. Correct responses involved two qualitatively different 
approaches. The first group of students displayed a point-wise approach either by 
marking certain points, such as (2, 1), (4, 2), (-2, -1), in the Cartesian space and then 
drawing a straight line through them or using the algebraic form of the function for 
transition from the graph given to that required. The second group of students, all of 
whom are in class A, sketched the graph of inverse function at once without any 
attempt to deal with the graph point by point. The common method is reflecting the 
graph given in the line of y = x.

Conclusion
The impact of teaching practices on students’ learning is a fruitful but at the same 
time a controversial research topic. Whereas educational sociologists emphasise the 
complexity of the social environment, within which there are several other variables 
that would profoundly affect the students’ learning (Peaker, 1971), educational 
psychologists argue that the individual’s cognitive growth is the most determinant 
factor in his/her acquisition of knowledge (Inhelder & Sinclair, 1969). We are fully 
aware that the impossibility of eliminating all the internal and external factors does 
not allow us to explain the influence of teaching practices on students’ learning in the 
sense of cause-and-effect relationships. However, our findings suggest that teaching 
practices that differ in a qualitative way are apt to produce qualitatively different 
learning outcomes. The epistemology of the inverse function was the basic criterion 

           Class A            Class B
n % n %

Incorrect 7 25 15 57
No response 0 0 2 7
Correct (point-wise approach) 14 50 10 37
Correct (global approach) 7 25 0 0
Total (N) 28 27
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in our examination of the students’ learning, the teacher’s teaching practices, and the 
interaction between the two. We conclude, primarily, that students would have 
difficulty in attaining a meaningful understanding of inverse function without 
experiencing it through conceptually focused and cognitively challenging tasks using 
a variety of representations. Making use of students’ previous knowledge (the 
knowledge of inverse operation) or providing analogies from real life situation might 
be productive for the construction of a foundation, but it is not adequate enough to 
promote the students’ conceptual understanding of inverse function. We suggest that 
what determines the quality of teaching, and would subsequently enhance the 
students’ meaningful learning, is making use of a variety of appropriate 
representational systems, examining the concept through conceptually focused and 
cognitively challenging tasks, linking the inverse function to the concept of ‘one-to-
one and onto’ function as well as to the concept of function itself, and ensuring active 
involvement of the students within the process of knowledge construction.
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THE IMPACT OF TEACHERS’ PERCEPTIONS OF STUDENT 
CHARACTERISTICS ON THE ENACTMENT OF THEIR BELIEFS 

Kim Beswick
University of Tasmania, Australia 

This paper reports on one aspect of a larger study and comprises an analysis of the 
beliefs concerning mathematics, its teaching and its learning, and the classroom 
practice of one secondary mathematics teacher. It focuses on the question, “What 
specific teacher beliefs about students are relevant to teachers’ classroom practice in 
various classroom contexts?” The teacher’s practice was examined in relation to 
several of his mathematics classes and significant differences, consistent with the 
teacher’s beliefs in regard to the various classes, were found. The findings confirm 
the contextual nature of beliefs and highlight the importance to teachers’ practice of 
specific teacher beliefs about the various students that they teach. 

BACKGROUND AND THEORETICAL FRAMEWORK 
A fundamental premise of teacher beliefs research has been that an individual’s 
behaviour is ultimately a product of his/her beliefs (Ajzen & Fishbein, 1980; Cooney, 
2001). Consequently, any attempt to change the practice of teachers must, of 
necessity, involve change in the beliefs of teachers. Teachers’ beliefs have, therefore, 
long been regarded as critical to the reform of mathematics education (Cooney & 
Shealy, 1997). Despite this there is no agreed definition of the concept of beliefs 
(McLeod & McLeod, 2002). It is thus the responsibility of researchers in the area to 
make clear the meaning that they attach to the term (Pajares, 1992). In this paper 
“beliefs” is used to mean anything that a person regards as true, and is essentially the 
meaning assigned to the word by Ajzen and Fishbein (1980). Furthermore, since 
beliefs must necessarily be inferred (Pajares, 1992), more certainty can be attached to 
the existence of a belief that is evident in both the words and the actions of an 
individual. Indeed, the degree to which a subject’s actions and statements in other 
contexts are compatible with a given stated belief, the more centrally held (Green, 
1971) that belief is likely to be. It is also recognised that individuals may hold beliefs 
that they do not articulate for a variety of reasons, including the fact that they may 
not be consciously aware of their existence (Buzeika, 1996). 
Wilson and Cooney (2002) observed that since the 1980s context has been 
increasingly recognized as relevant to studies of teaching and learning and that the 
teacher’s beliefs in fact constitute part of the context in which classroom activity 
occurs. In their theory of planned behaviour, Ajzen and Fishbein (1980) emphasised 
the context specificity of beliefs and Green (1971) also asserted the relevance of 
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context to the enactment of beliefs, suggesting that the relative strength with which 
various beliefs are held is dependent upon the particular context. 
Contextual constraints have also been recognised as exerting significant influence on 
the relationship between beliefs and practice (Sullivan & Mousley, 2001) while 
Hoyles (1992) described all beliefs as situated as a consequence of their being 
constructed as a result of experiences which necessarily occur in contexts. Hoyles 
(1992) argued that it is thus meaningless to distinguish between espoused and enacted 
beliefs or to examine the transfer of beliefs between contexts since differing contexts 
will, by definition, elicit different beliefs. Thus, rather than contextual factors 
constraining teachers from implementing certain of their beliefs, such factors in fact 
give rise to different sets of beliefs which are indeed enacted. Such a view is 
consistent with that of Ajzen and Fishbein (1980). Pajares (1992) also stressed the 
contextual nature of beliefs and the implications of their being held, not as isolated 
entities, but as part of belief systems as described by Green (1971).  
Context is thus relevant to both the development and the enactment of teachers’ 
beliefs, as well as to the particular beliefs that are relevant in a given situation. Hence 
an important challenge for researchers is to identify specific teacher beliefs that 
significantly impact their practice and that, while context specific, are relevant across 
a sufficiently broad range of contexts to be generally applicable. Hoyles (1992) 
described the emergence within PME of research that contributes to this end. In 
particular, she cited Romberg (1984) as identifying a relationship between teachers’ 
beliefs about students’ ability and the nature and difficulty of the tasks that they 
assign to them. Hoyles (1992) also called for more attention to be paid to the study of 
teachers’ beliefs as they exist in relation to various specific contexts and particularly 
in relation to the characteristics of their students.
In spite of this there is still little knowledge regarding specific teacher beliefs in 
relation to students that are likely to be helpful or otherwise in the creation of 
classrooms that reflect the principles of mathematics education reform. Exceptions 
include the finding of Stipek, Givvin, Salmon and MacGyvers (2001) that teachers 
who believe that students’ mathematical ability is fixed are more likely to hold 
traditional views of mathematics teaching, and Cooney, Shealy and Arvold’s (1998) 
findings regarding the beliefs of pre-service secondary mathematics teachers. While 
acknowledging the context specificity of beliefs they identified a number of beliefs 
that such teachers tend to hold about themselves and their role as a teacher and also 
made use of aspects of Green’s (1971) description of belief systems in accounting for 
both the varying impacts of these beliefs on teachers’ practice and their susceptibility 
to change. This paper reports on an examination of the variations between classes in 
the beliefs and practice of an individual experienced mathematics teacher, enabling 
insight into the nature and place within the structure of the teacher’s beliefs system, 
of his beliefs with respect to students. 
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Practice, in the current study, was considered in terms of the extent to which the 
teacher’s classroom environments could be characterized as constructivist. This was 
done cognisant of the facts that constructivism is not prescriptive in relation to 
teaching (Simon, 2000) and that any teaching strategy could be part of a 
constructivist learning environment (Pirie & Kieren, 1992). Rather a constructivist 
classroom environment was considered to be one in which: students were able to act 
autonomously with respect to their own learning; the linking of new knowledge with 
existing knowledge was encouraged and facilitated; knowledge was negotiated by 
participants in the learning environment; and the classroom was student centred in 
that students have opportunities to devise and explore problems that are of relevance 
to them personally (Taylor, Fraser & Fisher, 1993). Such elements align well with the 
principles and standards promoted by the National Council of Teachers of 
Mathematics (NCTM) (2000). 

THE STUDY 
The subject 
Andrew had been teaching secondary mathematics and science for 25 years.  He had 
studied mathematics for three years at University as part of his B.Sc. and had since 
completed an M.Ed. Andrew was currently teaching mathematics to two classes in 
grade seven and one in grade ten. Both of the grade seven classes were heterogeneous 
while the majority of students in the grade ten class were in the average ability stream 
with a few studying a separate mathematics course designed for low ability students.
Instruments
Data concerning Andrew’s beliefs were collected using a survey requiring responses 
on a five-point Likert scale, to twenty six items relating to beliefs about mathematics, 
its teaching and its learning, and from a semi-structured interview of approximately 
one hour’s duration. The survey items were taken from similar instruments devised 
by Howard, Perry, and Lindsay (1997) and Van Zoest, Jones, and Thornton (1994) 
and were originally part of a forty-item survey that was shortened after use in a pilot 
study. The audio-taped interview required Andrew to: reflect upon his own 
experiences of learning mathematics; describe an ideal mathematics classroom and 
compare this with the reality of his own mathematics classes; respond to 12 
statements about the nature of mathematics based upon the findings of Thompson’s 
(1984) case studies of secondary mathematics teachers; and respond to a further 12 
statements about the teaching and learning of mathematics derived from the same 
source. The 12 statements regarding the nature of mathematics consisted of four each 
that represented Problem Solving, Platonic, and Instrumentalist views of mathematics 
as defined by Ernest (1989), and the 12 statements relating to the teaching and 
learning of mathematics were similarly representative of three corresponding views 
of mathematics teaching and learning.
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Observations of approximately six lessons with the classes in each grade provided 
data on Andrew’s classroom practice as well as further opportunities to gather data 
from which his beliefs could be inferred. Data on Andrew’s classroom practice were 
also gathered from the interview and from both teacher and student versions of 
Constructivist Learning Environment Survey (CLES) described by Taylor et al. 
(1993) and requiring respondents to indicate on a five-point Likert scale, their 
perceptions of the frequency of various teaching/learning practices in their 
mathematics classroom. The CLES measures the four aspects of a classroom 
environment described above and respectively named Autonomy, Prior Knowledge, 
Negotiation and Student-Centredness (Taylor et al., 1993).
Procedure
Andrew completed the beliefs survey during the first few weeks of the school year. 
After a gap of several weeks he was asked to complete the teacher version of the 
CLES with respect to at least of two of his mathematics classes (one grade seven and 
the grade ten), and then to give the student version of the survey to students in these 
classes. Interviews were conducted in early October and observations of Andrew’s 
mathematics lessons occurred throughout November and December. Inferences 
concerning Andrew’s beliefs were made on the basis of the complete data set. That is, 
Andrew’s interview transcript and the detailed notes made during and after each 
observation period were examined for evidence supporting, contradicting or 
clarifying his belief survey responses and the CLES responses of both Andrew and 
his students. A set of five centrally held beliefs that emerged as most relevant to 
Andrew’s practice were suggested and put to him, along with details of the data 
analysis, for comment and verification.
Results and discussion 
Andrew’s belief survey responses indicated that he held a Problem Solving view of 
mathematics (Ernest, 1989) and a constructivist view of mathematics learning. This 
was exemplified by his agreement or strong agreement with statements such as the 
following:

Mathematics is a beautiful, creative and useful human endeavour that is both a way of 
knowing and a way of thinking. 
Ignoring the mathematical ideas that children generate themselves can seriously limit 
their learning. 
A vital task of the teacher is motivating children to resolve their own mathematical 
problems. 

However, Andrew seemed unsure as to the most effective pedagogical approach to 
employ in enacting those beliefs. For example, he was undecided about the following 
items: 



www.manaraa.com

PME28 – 2004  2–115

Mathematical material is best presented in an expository style: demonstrating, explaining 
and describing concepts and skills. 
Providing children with interesting problems to investigate in small groups is an effective 
way to teach mathematics. 

Students in one of Andrew’s grade seven classes and his grade ten class completed 
student versions of the CLES. Andrew opted to complete just one CLES (teacher 
version) survey rather than one for each class. The three sets of responses were 
similar for three of the four scales with the exception being the extent to which the 
classroom environments were perceived to be Student-centred. Both classes 
perceived their classrooms to be less Student-centred than did Andrew, with the 
difference being greatest in the case of the grade tens. Individual items that 
contributed to these differences are shown in Table 1. While individual differences 
are small, the data suggest that in his grade ten class Andrew was more likely than in 
his grade seven class to set the tasks and to be the arbiter of correct solutions. 

Table 1: Items contributing to differences in Student-Centredness 
In this class… Teacher  Grade seven 

(av. response)
Grade ten (av. 
response)  

I/the teacher give the students 
problems to investigate 

Seldom Sometimes Often 

The activities students do are set 
by me/the teacher 

Often Often Very often 

Students learn my/the teacher’s 
method for doing investigations 

Sometimes Often Often 

I/the teacher show(s) the correct 
method for solving problems 

Often Often Very Often 

Andrew’s interview responses confirmed his Problem Solving view of mathematics 
and his constructivist view of learning as conveyed in his belief survey responses. 
The following quotations are illustrative: 

I’ve swung in the past from being a Platonist to being more a social constructivist. So 
mathematics is, I don’t think it’s out there, I don’t think there is a number one sitting 
somewhere in the ether however effectively it sits there because we as a society have 
created it. 
Mathematics to me is for exploring, conjecturing…, well, there’s probably no such thing 
as right answers to any problem. 

His ambivalence regarding teaching approaches was also evident in that he expressed 
agreement that one of the ways that students learn is “by attentively watching the 
teacher demonstrate procedures and methods for performing mathematical tasks, and 
by practising those procedures”, but was careful to stress that this was just one way 
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that they learn, and that “there’s got to be a big balance”. Andrew described his own 
teaching as follows: 

I suppose I’m very teacher directed but at the same time what I like to do is not to give 
the kids the answers, but what I try to do is to make them think … 

Andrew talked primarily about his grade seven classes and described his grade tens 
as “a totally different kettle of fish”. He described them as more difficult to motivate, 
and also talked about what he regarded as the inappropriateness of much of the 
content of the course designed for grade ten students in the middle ability level, 
suggesting that these students needed “survival numeracy skills” and not “space and 
all these other things”. In the lessons observed, the grade ten class worked from 
worksheets on coordinates and mapping. Apart from brief introductions there was no 
whole class teaching. Rather students worked with minimal noise either individually 
or in twos or threes as they chose. Andrew rarely directly answered students’ 
questions about the mathematics, but instead made suggestions. Several of the 
students did very little work, and this was largely ignored provided that their 
behaviour was not disruptive.  
In contrast with his grade ten, Andrew’s grade seven lessons consisted primarily of 
whole class discussions facilitated and guided by Andrew. Both of the grade seven 
classes seemed accustomed to being asked to explain their answers and comfortable 
with going to the board to write their answers.  Questions such as, “How did you do 
it?”, “Is it right?” and “Will it always work?” were recurrent with the students 
sometimes using them too. The students consistently appeared to be engaged in 
genuinely grappling with the meaning of the mathematics. In one lesson on 
multiplying fractions, Andrew allowed the students to run with a conversation 
without comment until a student articulated that the effect of multiplying by a 
number greater than one makes it bigger and multiplying by a number smaller than 
one makes it smaller. Such conversations remained orderly, with one person speaking 
at a time and everyone else listening.
Andrew’s beliefs and practice 
Three beliefs emerged as centrally held and relevant to Andrew’s teaching in both the 
grade seven and grade ten classes. These were: 

1. The teacher has a responsibility to maintain ultimate control of the classroom 
discourse.

2. The teacher has a responsibility actively to facilitate and guide students’ 
construction of mathematical knowledge. 

3. The teacher has a responsibility to induct students into widely accepted ways of 
thinking and communicating in mathematics. 

However, although Andrew’s teaching in both contexts was consistent with 
constructivist principles there were clear differences. Andrew agreed that he was less 
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inclined than with the grade seven classes to make the effort to maximize the 
engagement of all students in the grade ten class, or to establish the social norms 
required to make whole class teaching effective for all students.  Two further 
centrally held beliefs underlay this, namely: 

4. Older students of average ability are not interested in mathematics. 

and,
5. Mathematics that is suitable for older students of average ability is not interesting. 

CONCLUSION
While the teacher in this study held beliefs that were essentially consistent with the 
aims of the mathematics education reform movement it is clear that his beliefs in 
relation to older students of average ability had a significant impact on his practice in 
their lessons and in fact limited the extent to which at least some students this class 
were likely to engage in mathematical thinking as embodied in the NCTM’s (2000) 
process strands. Thus if our aim is to promote teaching that is consistent with a 
constructivist view of learning then it is insufficient to assist teachers to develop 
beliefs that are considered helpful to this end without attending to other beliefs that 
they may hold in relation to specific contexts.  
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This paper presents the design and some results of a series of teaching experiments. 
The design was created to develop a model for everyday maths lessons, that describes 
the conditions which foster or hinder the construction of new mathematical mean-
ings. The development process includes the students’ epistemic processes, their social 
interactions, the mathematical domain and supporting functions of the teacher. 

INTRODUCTION
The theory of interest-dense situations describes how mathematical meanings are 
constructed in a special kind of situations in everyday maths lessons, so called inter-
est-dense situations. (Bikner-Ahsbahs 2002, 2003a, 2003b) At the same time, these 
situations characterize favourable conditions which support interest in mathematics. 
Thus, fostering interest in mathematics and constructing new mathematical meanings 
mesh together in interest-dense situations. However, new mathematical meanings are 
not only constructed in interest-dense situations but also during situations which can-
not be called interest supporting at all. How can the condition network out of which 
constructions of new mathematical meanings emerge theoretically be grasped inde-
pendently whether interest is supported or not? 
Based on empirical data the three collective epistemic actions gathering and connect-
ing meanings and structure-seeing were reconstructed during the development of the 
theory of interest-dense situations. These actions accompanied all processes of con-
structing new meanings during interest-dense situations and were the basis for build-
ing ideal types of epistemic processes. (Bikner-Ahsbahs 2003a, 2003c) Gathering and 
connecting meanings are activities which provide the tools for students to see 
mathematical structures whose validity they prove afterwards. The interplay of gath-
ering and connecting meanings on the one hand, and situation directed student and 
teacher behaviour (see also Williams 2002, 2003), on the other hand, could be re-
garded as a basic condition for the emergence of new mathematical meanings within 
interest-dense situations in the sample class (Bikner-Ahsbahs 2003a, 2003b). The 
question now is whether this condition network can be transferred to other classes, 
students of another age and other mathematical domains.  
Following this question I designed a series of teaching experiments in order to inves-
tigate the conditions which support or hinder constructing new mathematical mean-
ings about infinite sets. In the long run my goal is to develop a theory modelling the 
emergence of mathematical meanings in everyday maths classes. 
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THEORETICAL BACKGROUND 
During the last few years Dreyfus, Hershkowitz and Schwarz have developed a the-
ory to analyse processes of abstractions. (Dreyfus/Hershkowitz/Schwarz 2001; 
Hershkowitz/Schwarz/Dreyfus 2001) Meanwhile this theory has been adopted in dif-
ferent empirical studies. (Stehlikova 2003; Tsamir/Dreyfus 2002; Tabach/Hersh-
kowitz 2002; Williams 2002, 2003) The authors regard abstraction as a cultural acti-
vity leading to the construction of new meanings while reoganizing and restructuring 
familiar mathematical knowledge into a new structure. Processes of abstraction are 
driven by needs or motives. (Hershkowitz/Schwarz/Dreyfus 2001). The core concept 
of this theory is an epistemic action model connecting three epistemic actions: recog-
nizing, building-with and constructing. Recognizing refers to recognizing a familiar 
structure. Building-with is seen in the process of combining familiar pieces of know-
ledge into a new context. It includes recognizing. Processes of restructuring and reor-
ganizing what is recognized, and known to construct new meanings are labelled con-
structing. The authors call this epistemic action model the dynamically nested RBC-
model because of the nested and dynamically interwoven characteristic of the epis-
temic actions. 
This model describes an inner-perspective of constructing new meanings dependent 
on the situational conditions, the biographical background and the interactional pos-
sibilities. Whether or not utterances indicate recognizing, building-with or construct-
ing is due to the students’ biography and their individual abilities. Since the devel-
opment of this theory was a process of abstraction itself the same should be true for 
the RBC-model. The authors claim the RBC-model to be a suitable instrument for 
analyses of learning processes that fit the definition. Indeed, available data from 
which the authors extracted their theory only show teaching experiments with didac-
tical designs for the construction of new knowledge that step by step and systemati-
cally builds upon previously constructed structures. Thus, the RBC-model is espe-
cially useful for analyses of the just described construction processes. To what extent 
it is suitable for the analyses of more open situations with spontaneous constructions 
of meanings is an open question at present. 
The model of collective epistemic actions, gathering and connecting meanings and 
structure-seeing has been extracted from data describing interest-dense, hence, more 
open situations with a wide range of opportunities for the student to spontaneously 
construct new meanings. This model characterizes an outer-perspective because it is 
not really necessary to know details about the students’ learning biographies in order 
to decide what kind of action occurs. Weather or not a structure is new, the group 
usually indicates during the interactions. To what extent both models can be com-
bined into an integrative model that characterizes the emergence and the process of 
constructing new mathematical meanings is the key question in this project.  
Nearly all data that document processes of the emergence of new knowledge show: If 
teachers participate in these situations they mould them to a certain extent. Therefore 
an integrative model of epistemic actions should include the supportive function of 
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the teacher. Although teachers are included in investigations with both models con-
cerning social interactions they are not integrated into the models directly. This has 
yet to be done with an integrative model of epistemic actions.  
METHODICAL AND METHODOLOGICAL REFLECTIONS 
Comparing infinite sets as an initial activity 
Tsamir and Dreyfus have reconstructed the process of constructing meanings of Ben, 
a talented student of grade ten. During the interview they provoke different represen-
tations of countable infinite sets of numbers and evoke a contradiction about their 
size comparing the natural numbers. This contradiction induces Ben to reflect on the 
contradiction itself. This way he constructs meanings on different levels: on the 
mathematical content level and on a more reflective level of building mathematical 
theories (Tsamir/Dreyfus 2002). The central activity in these teaching experiments is 
comparing sizes of infinite sets. Results from this case study may be integrated into 
the development process of the integrative model if the design of gathering data is 
created in a similar way to that of the two authors. 
I have taken up the basic idea of comparing infinite sets. This idea is included in the 
creation of a series of experiments. The probands are students of grade nine. The task 
in the teaching experiment consists of a preparation and core task. 

Preparation task: One card after another is uncovered from a pile of cards. The cards 
show the natural numbers as a sequence to 7. Then cards from another pile are un-
covered. This time the cards show the squares of the natural numbers to 49 (figure 1). 
The rest of the two piles are put beside the two sequences. 

Figure 1: Comparing infinite sets of numbers using stacks of cards 

Imagine you could write all natural numbers and all square numbers on cards. Which 
pile of cards would need more cards? Why? For assistance further piles are prepared. 
Every pile shows different numbers for each pair of cards taken. Each pile is pre-
sented one by one but only if it seems necessary. 

Core task: The next representation schema made up of fractions is presented and ex-
plained (figure 2). The first row consists of all fractions with the denominator 1, the 
second one with denominator 2, and so on. Are there as many natural numbers as 
there are fractions? Why?

1 2 3 4 5 6 7 pile of 
cards

1 4 9 16 25 36 49 pile of 
cards
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Figure 2: Representation schema for all fractions 
The series of experiments – an overview 
The development of insight during this research process is conceptualized as an itera-
tive process. The series of experiments consists of teaching experiments. It starts with 
laboratory experiments and it finishes with field experiments. Each step consists of 
the conduction of the experiment, gathering and analysing all the data of the step at 
the current experimental stage. After extracting hypotheses from the analyses the next 
experiment is prepared and carried out. Using the concept of theoretical sampling 
from the grounded theory (Strauss 1994) sampling is theoretically based on previous 
insights in order to prove hypotheses and to continue the theoretical trace carried out 
before. The design is carefully adapted according to the choice of probands and a 
theory based variation of the didactical and interactional conditions. 
To get a deeper insight into different theoretical perspectives analyses are adapted to 
the principle of triangulation. Data from each experiment are analysed from three dif-
ferent theoretical perspectives: 

 From an epistemological perspective
 From a situational perspective 
 From an individual perspective 
In the first perspective the two epistemic action models are used, in the second and 
the third perspective the situational conditions are analysed using background theo-
ries of social interactions with a focus on the social environment, on the one hand, 
and the students’ and the teacher’s behaviour on the other. 
The first experiment as an endurance test 
The series of experiments start with so called endurance experiments. This means: 

 The design will prove the capacity of the two epistemic models to some extent. 
 The tasks are not separated into systematically assembled steps but are arranged in 

an open way to give the students as much leeway as possible for spontaneous and 
unexpected constructions of meanings.  

 The interviewer acts in two roles, the role of a teacher and the role of a test ad-
ministrator. She restricts herself as much as possible to the role of the researcher. 
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She presents material and ensures that the process of constructing meanings con-
tinues until the problems are solved. To shape a friendly atmosphere she tries to 
understand the students’ utterances from their view. At the same time she avoids 
as far as is possible giving assistance concerning the content, emotional support 
or acknowledgement.  

The teaching experiments begin with students who are interested in mathematics and 
voluntarily solve mathematical problems, for the probands should be able to cope 
with endurance situations and still reach the level of constructing new mathematical 
meanings. In the course of the series of experiments more and more, not necessarily 
interested students will be included in the sample. 
Three kinds of data: informing – acting – commenting 
The three-step-design of each experiment consists of three phases assembling differ-
ent modes of data, which are included in the analysis of each iteration step 
(Busse/Borromeo Ferri 2003). The phases are video recorded. The first phase lasts 
about five or ten minutes, the second about an hour and the third has no time limit:  

 Phase 1: The probands are asked what infinte means to them (informing). 
 Phase 2: The probands work on the tasks (acting).
 Phase 3: The probands and the researcher watch the video records of the second 

phase. The students stop the film and comment on the situations at important 
points. They are asked to say how they experienced the process of working on the 
problems (commenting).

SOME DATA, RESULTS, AND CONCLUSIONS 
The transcipt of the first experiment is worked out but the analyses are not yet fin-
ished. Nevertheless, they already show interesting tendencies. Both epistemic action 
models seem to complement each other. The model of collective epistemic actions 
describes collective gathering and connecting activities where familiar structures are 
recognized and which are the basis for building-with processes. If, like in our case, 
no mathematical knowledge about infinite sets is available the attempt to link the new 
context and previously constructed structure seems to be obvious. The students’ 
metaphors link known mathematical structures as source systems with the new con-
text to enlarge the range of possible actions with new objects. 
Example 1: Toni says infinite is a number that is bigger than any other number. This 
idea is elaborated by Toni and his friend Robin in common: “this number exists on a theo-
retical basis only”, “the number infinite (infinity) is a theoretical assumption which never can be 
proved”, “probably we have a theoretical number that probably could exist from the theoretical view 
but that does not really come out anywhere in practice”. Therefore infinite is conceived as a 
theoretical number but not as a practical one. The metaphor infinite is a number 
enlarges action possibilities and broadens the students’ number concepts. Along with 
this and during the further going second phase infinite is used as a counting number 
with special rules: :3 = ,  – 2 = , ( – 2):2 = , ( – 2):4 = , ... More meta-
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phors like infinite as a process, infinite as one point infinitely far away, infinite as a 
term enable the students to use further reaching considerations and new kinds of act-
ing.
Thus, possible considerations of infinite are gathered. They are implicitly shown in 
the students’ actions and in their usage of metaphors. Metaphors link familiar sign 
systems with the potentially new sign system. They provide a choice for recognizing 
familiar mathematical objects which are combined and worked out on a trial basis. If 
Robin and Toni reach contradictions or limits during activities of building-with they 
restart gathering and connecting. This way they gain new tools and thus, an extended 
basis for recognizing and building-with.  
The following hypothesis is derived from the preparation task and can be already 
proven in the analyses of the core task and of some data from other investigations: 

Rich and fruitful problem based gathering and connecting activities are basic 
activities for the emergence of recognizing and building-with actions.

Recognizing and building-with activities do not always lead to constructions. I will 
refer to a scene now where the two boys succeed in constructing new meanings. 
Through this I will show how interaction processes contribute to the construction of 
new meanings and will use this insight to deduce an important support function of 
teacher.
Example 2: During the preparation task Robin and Toni compare the size of the set of 
natural numbers with the size of the set of natural numbers beginning with 3. In the 
remark “you may balance it out again and again” Robin uses a the metaphor of balancing
out something. By this he seems to explain to himself that the sizes of the sets of 
natural numbers beginning with 1 and beginning with 3 are equal. However, Robin 
does not work his idea out, not even when the interviewer asks him to do so. Instead, 
Toni elaborates it: 

Toni: yeah you can if you just take these two number rows (points at 1,2,3,4, ... and ,then at 
3,4,5,6, ...) let’s assume the infinity goes on and on and it is now at ,ten then this is at ten too 
(points at 3,4,5,6, ...) but includes two less but then it goes on until twelve. This is balanced 
OUT again. If that one goes on until twelve (points at 1,2,3,4, …) then that has two less. 
(points at 3,4,5,…) 

Although the boys had never used an inductive proof before, Toni’s way of argumen-
tation is based on the idea of it and the preconception of an infinite process. He fo-
cuses on the first ten steps of the infinite process of uncovering cards written with 
natural numbers whose last number is ten. The segment of the comparison set of 
natural numbers beginning with 3 and finishing with the number 10 has two numbers 
less. The idea of an infinite process allows the supplement of the next two numbers to 
12: “that is balanced OUT again” Toni says. Now he focuses on the segment of natural 
numbers to 12 which has two numbers more than the comparison segment. Continu-
ing his thought process Toni lengthens the segment of natural numbers beginning 
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with 3 to the number 14. Afterwards this thought process is worked out in more de-
tail.
Robin has used – probably in an unconscious way – a metaphor which he is not able 
to work out. Obviously Toni recognizes its potential for reasoning and constructs a 
way of arguing that confirms the validity of the statement that both sets have the 
same size.  
Example 3: A similar phenomenon can be observed during the core task. Different 
attempts to construct all fractions as a sequence have failed. The central obstacle 
seems to be the order type of the set of fractions: The set of positive fractions does 
not have a minimal element and is dense. All of a sudden Toni starts to count begin-
ning with 

1
1  (“one oneth”) while moving his fingers from one fraction to another in a 

diagonal counting pattern (figure 2). Despite the request of the interviewer Toni does 
not react. He does not seem to be aware of what he is doing. A bit later Robin takes 
up the way Toni has counted and shows that the set of natural numbers and the set of 
fractions are equivalent. 
The metaphor of balancing out something as well as the counting finger motion is a 
subconsciously used sign. These signs transform the situations into situations with an 
increased range of action. Obviously more can be expressed, said or shown than con-
sciousness may grasp explicitly. The metaphor of balancing out something and the 
counting finger motion appear as an offer of work for the other student who now has 
extended possibilities to act. Exactly this idea to transform the situation through of-
fers of work which can extend action possibilities underlines the importance of the 
teacher’s support function. Re-analyses of data about interest-dense situations con-
firm: 

Teachers are able to transform situations constructively and these transforma-
tions of situations support the construction of new mathematical meanings even if 
students are not especially interested in mathematics. 

This is shown by the use of metaphors and offers of work like motions, diagrams 
modelling student behaviour, or patterns of sketch-program actions where the teacher 
takes up a student’s action sketch and transforms it into an action program. But how 
can support functions be included into an integrated model for the emergence of new 
mathematical meanings? This is an open question at present that has yet to be inves-
tigated.
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IDENTITY, KNOWLEDGE AND DEPARTMENTAL PRACTICES: 
MATHEMATICS OF ENGINEERS AND MATHEMATICIANS

Erhan Bingolbali and John Monaghan 
University of Leeds, UK

This report explores first year undergraduate mechanical engineering and mathematics 
students’ conceptions of the derivative and the contribution that membership of different 
departments may have on these conceptions. Quantitative results suggest that mechanical 
engineering students develop a proclivity for rate of change aspects of the derivative whilst 
mathematics students develop a proclivity for tangent-oriented aspects. The analysis of 
qualitative results further suggests that students’ conceptual development of the derivative
and their emerging identities are closely related and co-evolve in accordance with the 
departmental practices in which learning and teaching occur. 

INTRODUCTION
This paper explores first year undergraduate mechanical engineering and 
mathematics students’ differing orientations to, or conceptions of, the derivative. The 
mathematical education of engineers is a topic of increasing debate (see, Kent & 
Noss, 2002; McKenna, McMartin, Terada, Sirivedhin, & Agogino, 2001; Maull & 
Berry, 2000). Researchers have dealt with mathematics in the practice of engineers, 
developing new curricula for engineering students, students’ difficulties with 
understanding mathematics and students’ conceptual development in specific topics.  
Maull & Berry (2000) has commonalities with our study. They examine first and 
final year mechanical engineering and mathematics undergraduates alongside 
postgraduate students and professional engineers. They conclude that “the 
mathematical development of engineering students is different from that of 
mathematics students, particularly in the way in which they give engineering 
meaning to certain mathematical concepts” (ibid, p.916). They noted that both groups 
of students showed similar patterns of responses at the entry, by the final year, the 
groups’ responses diverged. They did not, however, provide reasons for this emergent 
divergence and called for further research: 

‘There is evidence in the literature that engineering students are socialised into ways of 
thinking and behaving, and we may ask whether the difference found stems from 
socialisation, from the interactions between students and their peers, lecturers and other 
professional contacts, or whether there is also a second acculturation process through 
their discovery of what is useful in the context of their study and work’ (ibid, p.916). 

Our considerations of divergence in engineers and mathematics students’ conceptions 
have focused on issues of identity. Western research on identity has, by and large, 
come from a psychological perspective that conceptualises identity as an individual's 
sense of self (Harter, 1998). In the last five years, however, considerations of identity 
have been informed by social and socio-cultural theories (Wenger, 1998; Holland 
Lachicotte, Skinner, & Cain, 1998; Boaler, 2002; Nasir, 2002). Common to these 
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perspectives is an assumption that individual growth and learning is situated in the 
social context/practice in which learners/practitioners live – the ‘process of 
becoming’ is practice-bound. We draw on Holland et al.’s (1998) idea of ‘positional 
identity’ in this paper. Positional identity refers to the way in which people figure out 
and enact their positions in the worlds in which they live. Their account of positional 
identity is based on their theory that identities develop in and through social and 
cultural practices. They argue that identities are closely related to structural features 
of the society and positional identities are connected to social affiliation and the way 
cultural systems work. 
DEVELOPMENT OF THE RATIONALE OF THE STUDY 
The project that this paper arises from set out to explore whether there is any 
difference between mechanical engineering (ME) and mathematics (M) degree 
students’ conceptual development of the derivative concept over the first year of 
study and, if there are differences, to explore reasons for these differences. This study 
was conducted in a large university in Turkey. We do not claim that results from this 
study generalise beyond the confines of this university. The approach to data 
collection is naturalistic (Lincoln & Guba, 1985). Data were collected by a variety of 
means: quantitative (tests), qualitative (questionnaires and interviews) and 
ethnographic (classroom observations of semester 1 calculus courses and ‘coffee-
house’ talk). In this paper we focus on two test items (see Figure 1) and provide 
summary data on pre-, post- and delayed post-tests and on classroom observations. 
The purpose of the summary data is to give the reader an appreciation of students’ 
conceptions and their learning environments and also to inform the discussion 
section.
SUMMARY DATA
The pre-, post- and delayed-post tests were administered to 50 first year ME and 32 
M students and addressed questions regarding, ‘rate of change’ and ‘tangent’ and 
were used to gain insight into: (a) how ME and M students’ concept images of the 
derivative developed over the course, (b) how students dealt with rate of change and 
tangent concepts when questions were presented in graphic, algebraic and application 
forms and (c) whether there were any differences between ME and M students’ 
performance in the different forms of these questions. The pre-test was administered 
to all students at the beginning of the course and there was no significant difference 
between ME and M students’ performance. Both groups of students improved their 
performance in the post-test which was set at the end of the first semester. The 
delayed post-test was set towards the end of the second semester and both groups of 
students continued to improve. ME students, overall and in comparison with M 
students, did much better on rate of change-oriented test items regardless of whether 
the items were presented in algebraic, geometric or application-based forms. 
Similarly M students did much better than ME students on all forms of tangent-
oriented questions. These trends (ME to rate of change, M to tangent) remained 
strong in the delayed post-test. 
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The calculus courses were observed and compared with students’ notes to gain 
insights into which aspects of the derivative were ‘privileged’ in each department 
(Wertsch, 1991, p.124 uses ‘privileging’ in place of ‘domination’ to emphasise that a 
mediational means may be viewed as most appropriate in a particular setting). The 
analysis of observations and students’ notes indicates (see, table 1) that ME students 
were taught more application (rate of change) aspects of the derivative compared to 
M students who were taught more theoretical or tangent-oriented aspects. 

Rate of change Tangent
ME M ME M 

Duration
examples

�133 minutes 
(9 examples) 

�11 minutes  
(no examples) 

�10 minutes 
(no examples) 

�85 minutes 
(7 examples) 

Table 1: The general analysis of ME and M calculus course’ notes 

DEVELOPMENT OF ‘RATE OF CHANGE’ VERSUS ‘TANGENT’ ITEMS 
The trend (ME to rate of change, M to tangent) emerged from the post-test data. We 
decided to design two further items which might shed further light on the reasons 
behind this trend and administered these with the delayed post-test. Item 1 provided 
students with one rate of change-oriented question (A) and one tangent-oriented 
question (B) and asked them to state which one they would choose to solve if they 
were asked in their examination. When students chose each question, they were also 
asked to explain reasons behind their selection. Item 2 provided students with an 
imaginary situation where two students exchange ideas regarding their understanding 
of the derivative concept. Students were asked which view was closer to their way of 
thinking. These items were given to 45 ME and 32 M students. 

Item 1: If the following two questions (A and B) were given in an examination and you 
only had to solve one of them, which one would it be? Please tick just one option and 
explain why you chose that one. 

A.) At a certain time (t, seconds) the rate at which water flows (m3 /sec) into a water tank is 

given by the formula  f(t)= 4
2t +24t+125. Find: 

a.) The initial amount of water in the tank and its initial rate of change? 
b.) What is the rate of change of flowing water at any time, t?
c.) The time at which the rate of change is 32 m3/sec2.

B.) Find the solutions of the following questions: 
a.) Verify that the gradient of the tangent to the curve y=x2 at a point (x1, x1

2)=2 x1.
b.) Find the equation of the tangent to the curve y=2x2-x+3 which is parallel to the line
y=3x-2.
c.) Show that the graph of f(x)= x1/3 has a vertical tangent line at (0,0) and find an equation 
for it.
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Item 2: Two university students from different departments are discussing the meaning of 
the derivative. They are trying to make sense of the concept in accordance with their 
departmental studies. 
Ali says that “Derivative tells us how quickly and at what rate something is changing since 
it is related to moving object. For example, it can be drawn on to explain the relationship 
between the acceleration  and velocity of a moving object. 
Banu, however, says that “I think the derivative is a mathematical concept and it can be 
described as the slope of the tangent line of a graph of y against x”.
a.) Which one is closer to the way of your own derivative definition? Please explain! 
b.) If you had to support just one student, which one would you support and why?
Figure 1. Two items to explore reasons for rate of change and tangent orientations 

RESULTS
We first present quantitative data (frequency counts) and then a categorisation of 
students’ reasons for their choices. Tables 2 & 3 show students’ responses to items 1 & 2. 

Item 1 ME M 
Question A (A) 60 % (27) 22 % (7) 
Question B (B) 40 % (18) 78 % (25) 

Table 2. Students’ responses (percentages–raw frequencies in brackets) to item 1 

 ME M 
Item 2 Item 2a Item 2b Item 2a Item 2b 
Ali (A) 51 % (23) 49 % (22) 19 % (6) 13 % (4) 

Banu (B) 27 % (12) 49 % (22) 63 % (20) 78 % (25) 
Both (A &B ) 22 % (10) 2 % (1) 16 % (5) 3 % (1) 

Not Attempted (NA) 0 0 3 % (1) 6 % (2) 
Table 3. Students’ responses (percentages–raw frequencies in brackets) to item 2 

For item 1 ME students show a preference (60:40) for rate of change-oriented item 
over tangent-oriented one whilst M students show quite a strong preference (78:22) 
for tangent-oriented question. Similar preferences can be seen in item 2a. In item 2b 
the preference of the M students remains but the ME students are equally divided. 
Tables 4 and 5 present a categorisation of students’ reasons for their choices in items 
1 & 2. Repeated reading of students’ responses generated three emergent categories: 
Affiliation; Practice; and Ease. ‘Affiliation’ is a construct used by Nasir & Saxe 
(2003) to describe identification with a common cultural ancestry and distinctive 
cultural patterns and it appeared to us an appropriate term to apply to M and ME 
students who identified themselves as belonging to a particular department. ‘Practice’ 
here concerns students’ calculus practices and this, as these students are novice 
practitioners, is related to what goes on in calculus courses. We use the term ‘wider 
practices’ in the discussion section when we attend to departmental features that are 
not solely concerned with calculus. ‘Ease’ here means what particular students 
reported that they found easy (not our decisions on the ease of items). We first 
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explain how we allocated students responses to these categories and present examples 
of students’ responses for each category. 
Affiliation (ME) ME students’ responses were placed in this category when they 
mentioned any of the following: real life; applications; rate of change; engineering.
Student 1    ‘What Ali says is closer. Calculating rates of change seems to me more real. On 
the other hand what Banu says is not far away, even it is so close. … But since I am going to 
be an engineer, Ali’s idea would be just different. Because I would be the one who makes 
mathematics concrete’.

Affiliation (M) M students’ responses were placed in this category when they 
mentioned any of the following: the exact nature of the derivative; the slope of a 
tangent; belonging to a mathematics department; interpretation from a mathematician 
standpoint; the comprehensiveness of the definition.
Student 2   ‘Banu interprets the derivative from a mathematician’s perspective, and Ali 
interprets it from a physicist standpoint. At the end of the day, since I too am from 
mathematics department, I find Banu’s explanation closer to myself.  But in essence they 
both present the essence of mathematics’.

Practice (ME) ME students’ responses were placed in this category when they 
mentioned the way calculus is being covered and used in their department.
Student 3 ‘We are using it in that way and learning it that way’. 

Practice (M) M students’ responses were placed in this category when they 
mentioned not knowing much about rate of change or the way calculus is being 
covered in their department.
Student 4 ‘We are learning in that way and I don’t know much about rate of change’. 

Ease( ME & M) Students’ responses were placed in this category when they 
mentioned the ‘ease’ of this way of thinking about the derivative.  
Student 5   ‘Because it is easier’ 

Engineers choosing A Mathematicians choosing B Categorisation
of responses Item1

60% (27) 
Item 2a 
51% (23) 

Item 2b 
49% ( 22) 

Item1
78% (25) 

Item 2a 
63% (20) 

Item 2b 
78% (25)

Affiliation 20% (9) 44% (20) 44% (20) 13% (4)  47% (15) 66% (21) 
Practice 11% (5) 7% (3) 4% (2) 50% (16) 28% (9) 13 % (4) 
Ease 29% (13) 0 0 16% (5) 0 0 

Table 4   Responses of ME students who chose As and M students who chose Bs 
‘Affiliation’, ‘practice’ and ‘ease’ are cited by both groups of students for item 1 and 
there is no clear pattern to these responses but note that 50% of M students cite 
‘practice’. ‘Ease’ is not really applicable for item 2 and all students cite either 
‘application’ or ‘practice’ with ‘affiliation being the dominant stated reason. 
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Engineers choosing B Mathematicians choosing A Categorisation
of responses Item1

40% (18)
Item 2a
27% (12)

Item 2-b 
49% (22) 

Item1
22% (7) 

Item 2a 
19% (6) 

Item 2-b 
13% (4)

Affiliation 0 18% (8) 49% (22) 6% (2) 19% (6) 10 % (3) 
Practice 9% (4) 9% (4) 0 0 0 0 
Ease 31% (14) 0 0 13% (4) 0 0 
Not categorised 0 0 0 3% (1) 0 3% (1) 

Table 5   Responses of ME students who chose Bs and M students who chose As 
‘Ease’ is the dominant cited reason in item 1 and ‘affiliation’ is the dominant cited 
reason in item 2 for students who do not follow the ‘ME – rate of change, M – 
tangent’ trend. That 49% of ME students’ responses (item 2b) is with a 
mathematician’s concept of the derivative is noteworthy. 
DISCUSSION 
In this section, we attend to possible reasons for ME students’ tendency to rate of 
change and M students’ tendency to tangent aspects of the derivative concept. We 
focus on practice and affiliation as these constructs, in the categorisation of students’ 
responses, apply to both items 1 & 2 (see tables 4 & 5). We first discuss practice, 
then affiliation, then the relationship between affiliation and positional identity and 
end with questions for further research. 
Table 1 shows that the ME students’ calculus course ‘privileged’ rate of change 
examples whilst the M students’ calculus course ‘privileged’ tangent examples. 
Calculus practices in each department are likely to have played an important role in 
the growth of the different tendencies in these two groups of students’ performances 
In this regard, Kendal & Stacey (2000) show how students’ conceptions of the 
derivative are strongly influenced by the aspect of the derivative privileged by their 
teachers. It is thus reasonable to infer that privileging of rate of change and of tangent 
aspects of the derivative in the two calculus courses influenced students’ orientation 
and knowledge development.
Table 4 shows that both groups of students, but especially M students, referred to 
practice in explaining the reasons behind their choices in items 1 & 2, i.e. their 
preferences for rate of change or tangent forms of the derivative. Others, however, 
related their preferences for specific forms of the derivative to affiliation and ease 
(especially ME students). We do not believe that it is possible to separate students’ 
feelings of affiliation and perceptions of ease from practice. We further believe that 
the specific calculus practices of the students, e.g. the type of examples they are most 
often presented with,  are interrelated to the wider practices of their departments and 
that students’ ways of participating are adapted to the constraints and affordances 
existing in each department (Greeno, 1998; Boaler & Greeno, 2000), i.e. these wider 
practices facilitate student access to some forms of the derivative but simultaneously 
constrain (maybe inadvertently) access to other forms.  
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Do the calculus practices alone explain ME students’ proclivity to rate of change and 
M students’ proclivity to tangent aspect of the derivative concept? Students responses 
suggest that the answer is ‘no’. Affiliation (see tables 4 and 5) is the highest cited 
reason given by both groups of students in explaining their preferences for forms of 
knowledge. We interpret this as evidence for a developing personal association 
(being an engineer or a mathematician) towards particular conceptual forms of the 
derivative. The applicability of the derivative concept, for instance, was cited as a 
reason for their preferences for rate of change-oriented items by many ME students. 
In a similar manner many M students attached considerable importance to the ‘exact’ 
nature of the derivative. It is, therefore, plausible to infer that the reasons behind the 
students’ different inclinations for the different forms of the derivative arise not only 
from the fact that their calculus practice privileged these forms but also because 
students from each department developed different affiliations towards different 
aspects of the derivative.
Affiliation appears to be an important construct in understanding undergraduate 
students’ conceptions, but where does affiliation come from? We have noted that the 
ME to rate of change and M to tangent trend was not present in the pre-test but was 
present in the post-test. It appears to have developed during the first semester. We 
believe that Holland et al.’s (1998) notion of positional identity is relevant in 
explaining the genesis of affiliation. Students’ developing affiliation towards 
particular forms of the knowledge could come into being as a result of the way that 
students comprehended and enacted their positions in the department to which they 
belong. This positioning can take many forms, mental and physical, e.g. going to the 
part of the mathematics section of the library that deals with applied (or pure) 
mathematics. In the course of their studies it is likely that students from each 
department began to position themselves according to their professional perspective 
and this positioning influenced their proclivity towards specific forms of knowledge. 
The concept of positional identity helps us to appreciate that what we have termed 
affiliation is not just a personal mental construct but, to use Holland et al.’s (1998) 
language, is shaped by enacting their positions. Many ME students, for example, 
attended meetings organised by the ME department with local professional engineers. 
Positional identity is clearly a related construct to affiliation, but what else can be said 
about the relationship between these two? We cannot give definitive answers as our 
data is inconclusive but there are interesting questions for further research. We believe 
the relationship is a dialectical one, i.e. that the positions enacted by students help 
shape departmental affiliations and that students’ affiliation is a characteristic of their 
emerging positional identities. Further to this, and with regard to students’ emerging 
identities and their relationship with forms of knowledge, what relation exists between 
students’ knowledge development and their emerging positional identities? 
CONCLUSION
Mechanical engineering students develop a proclivity for rate of change aspects of 
the derivative whilst mathematics students develop a proclivity for tangent-oriented 
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aspects. Further to this, it appears that students’ conceptual development of the 
derivative and the way they build relationships with its particular forms are closely 
related and co-evolve in accordance with departmental perspectives. 
It has been argued that this difference between the conceptions of the both groups 
students cannot solely be attributed to the practice of the courses that the students 
followed. Departmental affiliation appears to have influence on cognition and play a 
crucial role in the emergence of this difference. The concept of positional identity has 
links with the concept of affiliation. An implication for further research into students’ 
understanding of calculus at the undergraduate level is that researchers should not 
ignore students’ departmental affiliation. 
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ELEMENTARY GRADES STUDENTS' CAPACITY FOR  
FUNCTIONAL THINKINGi

Maria L. Blanton and James J. Kaput
University of Massachusetts Dartmouth, USA

This is a study of how urban elementary grades students develop and express 
functions. Data were analyzed according to the forms of representations students 
used, the progression in students' mathematical language and the operations they 
employed, and how they attended to one or more varying quantities. Findings 
indicate that students are capable of functional thinking at grades earlier than 
perhaps thought. In particular, data suggest that students can engage in co-
variational thinking as early as kindergarten and are able to describe how quantities 
correspond as early as 1st-grade. Although pattern finding in single variable data 
sets is common in elementary curricula, we conclude that elementary grades 
mathematics should extend further to include functional thinking as well.

BACKGROUND FOR THE STUDY 
Research increasingly documents the ability of elementary grades (PreK-5) students 
from diverse socioeconomic and educational backgrounds to engage in algebraic 
reasoningii in ways that dispel developmental constraints previously imposed on them 
(e.g., Bastable & Schifter, 2003; Blanton & Kaput, 2003; Carpenter, Franke, & Levi, 
2003; Carraher, Schliemann, & Brizuela, in press; Dougherty, 2003; Kaput & 
Blanton, in press; Schifter, 1999; Schliemann, Lara-Roth, & Goodrow, 2001). One of 
the forms algebraic reasoning takes involves functional thinking, which Smith (2003) 
describes as "representational thinking that focuses on the relationship between two 
(or more) varying quantities" and for which functions denote the "representational 
systems invented or appropriated by children to represent a generalization of a 
relationship among quantities". As reported earlier (Blanton & Kaput, 2002), our 
interest in the development of algebraic reasoning in elementary school mathematics 
led us to identify design aspects of tasks that might be used to exploit algebraic ideas, 
particularly in tasks where algebraic reasoning occurred through generalizing from 
numerical patterns to develop functional relationships. This study extends that work 
and builds on the emerging research base in early algebraic thinking by examining 
how students in elementary grades are able to develop and express functional 
relationships.

METHODOLOGY
The data for this study were taken from GEAAR, a 6-year, teacher professional 
development program in an urban school district designed to help teachers transform 
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their instructional resources and teaching practices to build on classroom 
opportunities for algebraic reasoning. We base the particular findings reported here 
on PreK-5 student responses from one of the district's schools to the task "Eyes and 
Tails". The task involves developing a functional relationship between an arbitrary 
amount of dogs and the corresponding total number of eyes or the total number of 
eyes and tails: 

Eyes and Tails:

Suppose you were at a dog shelter and you wanted to count all the dog eyes you saw. If 
there was one dog, how many eyes would there be? What if there were two dogs? Three 
dogs? 100 dogs? Do you see a relationship between the number of dogs and the total 
number of eyes? How would you describe this relationship? How do you know this 
works?

Suppose you wanted to find out how many eyes and tails there were all together. How 
many eyes and tails are there for one dog? Two dogs? Three dogs? 100 dogs? How 
would you describe the relationship between the number of dogs and the total number of 
eyes and tails? How do you know this works?

"Eyes and Tails" was selected because its accessibility across the grades allowed us 
to look for longitudinal trends in students' functional thinking. Student responses 
were collected from written work and teacher interviews and were analyzed by grade 
according to the types of representations students used at different grades, the 
progression of mathematical language in students' descriptions of functional 
relationships, how students tracked and organized data, the mathematical operations 
they employed to interpret functional relationships (i.e., additive vs. multiplicative), 
and how they expressed variation among quantities. 

RESULTS
Pre-kindergarten (Ages 3–5)
The teacher and students spent time with paper cutouts of dogs, counting their eyes 
and tails. Students described the amounts as "even" or "odd". With the teacher's 
guidance, the whole class used a t-chart to organize their data. As a class, they 
recorded that one dog had 2 eyes and 1 tail, or a total of 3. They also determined that 
2 dogs had 4 eyes and 2 tails, or 6 total.  As the children offered the number of eyes, 
the teacher wrote that number in the appropriate box in the t-chart and put a 
corresponding number of dots below the box.  She recorded the number of tails for a 
given number of dogs in a similar manner.  
In finding the total number of eyes and tails for a given number of dogs, the teacher 
pointed to each of the dots as the class simultaneously counted. When the teacher 
asked about 3 dogs and 4 dogs, the children counted the number of eyes and tails 
using dog pictures on the floor in front of them. No predictions were made at this 
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grade and answers were determined by counting visible objects. Moreover, there was 
no indication from the data that students looked for patterns. However, we maintain 
that a significant mathematical event for these students was not only the development 
of correspondence between numeral and object, but also the introduction of a 
function table (t-chart) as a means to organize quantities that co-vary. The latter event 
reflects the early development of representational infrastructure to support algebraic 
reasoning.
Kindergarten
In one class, students recorded data by making a dot for each eye and a long mark for 
each tail. Dots were grouped in pairs or in 4-dot, 2x2 arrays. Dots (eyes) and marks 
(tails) were recorded under the number sentences that represented the total number of 
eyes and tails for a given amount of dogs. Data were aggregated by groups of dogs, 
which were drawn and painted by students, and the corresponding number sentences 
for total eyes or total eyes and tails, as well as dots and marks representing eyes and 
tails, were recorded and encircled by students (see Figure 1). Data were calculated for 
up to 10 dogs. T-charts were used in some kindergarten classes (with data recorded 
on the charts by the teacher) and some students identified the pattern in the amount of 
eyes as "counting by 2s", "more and more", and "every time we add one more dog, 
we get two eyes".

Figure 1. Kindergarten students' representation for 2 dogs. 

(Total number of eyes for 2 dogs) 

(Total number of eyes and tails for 2 dogs) 
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In one class, after the teacher and students built a t-chart that recorded the number of 
eyes on 1, 2, 3 and 4 dogs (the teacher recorded the data), the following exchange 
occurred in which the teacher called on students to identify a pattern based on parity 
in the data: 

Teacher: What if [we have] 5 dogs? Odd or even? 

Student: Even.

Teacher: Why? 

Student: We're skipping all the odd numbers. 

We include this particular transcript here because it illustrates an important point. By 
asking students to analyze the data in terms of parity (even or odd) and not just 
quantity, the teacher required a further abstraction in student thinking.  We find it 
mathematically significant that kindergarten students were not only able to recognize 
even and odd numbers (a concept we had observed as difficult for some third-grade
students during the early stages of GEAAR), but were also able to articulate a pattern, 
albeit primitive, about parity in the data. 
First grade
First-grade teachers noted that students had used t-charts previous to "Eyes and 
Tails". Moreover, students, rather than the teacher, recorded data on t-charts. They 
described patterns in the case of counting eyes and tails as "we are counting by 3s". 
Literacy activity was integrated into the problem in one class, where students made 
rhyming words and constructed poems in conjunction with the pattern "counting by 
2s". With the teacher, students in this class tried to predict the number of eyes 7 dogs 
would have and used skip counting to find the answer. Students saw that the pattern 
would "double" (for total eyes), and then "triple" (for total eyes and tails). 
Second grade 
Students in one 2nd-grade class recorded their data on a t-chart for 1 to 10 dogs and 
were able to give a multiplicative relationship using natural language ("You have to 
double the number of dogs to get the number of eyes"). They then used this to predict 
the number of eyes for 100 dogs without counting the eyes. They constructed a 
similar t-chart for counting eyes and tails and used this, based on the information 
recorded in their t-charts, to predict that the total number of eyes and tails for 100 
dogs would be 300.
Third, fourth, and fifth grades 
Students in 3rd-grade classes used t-charts fluently, were able to express the rule 
multiplicatively in words and symbols, and could predict the number of eyes or eyes 
and tails for 100 dogs using their rule. In counting the number of eyes, students noted 
that "It doesn't matter how many dogs you have, you can just multiply it by 2". 
Students were able to describe this relationship as 'n�2' and '2�n'. One 3rd-grade class 
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graphed their results comparing the number of eyes with dogs (see Figure 2) and 
comparing the number of eyes and tails with the number of dogs. Fourth- and 5th-
grade student work was similar to that in 3rd-grade, with the only noticeable 
difference being that students in later grades needed less data (only up to 3 dogs) to 
develop a function.

Figure 2. Third-grade students' graphical representation of the total number of eyes 
versus number of dogs. 

DISCUSSION
These data indicate that very young learners are capable of functional thinking and 
suggest how that thinking might progress over grades Pre-K–5. Particularly, shifts 
occurred in how students were able to (1) use representational forms such as t-charts, 
(2) articulate and symbolize patterns, from natural language descriptions of additive 
relationships to symbolic representations of multiplicative relationships, and (3) 
account for co-varying quantities. The following discussion details that progression. 
The development of representational infrastructure and students' symbol sense 
Across the grades, students used tables, graphs, pictures, words and symbols to make 
sense of the task and to express mathematical relationships. Regarding the 
scaffolding of these representational forms, teachers were typically the recorders for 
t-charts in earliest grades, although by first grade students began to assume 
responsibility for this. In one kindergarten class, students did record the data on a 
class chart, but the teacher played a large role in organizing the data. By 2nd- and 3rd-
grades, students seemed to use this representational tool fluently.
In grades Pre-K through 1, students relied on counting visible objects, keeping track 
of their counting in various ways through t-charts or making dots and marks for eyes 
and tails (see Figure 1). In early grades, t-charts became opportunities to re-represent 
marks with numerals as children worked on the correspondence between quantity and 
numeral representation. T-charts were the most common way, especially from 1st-
grade through 5th-grade, that students organized and tracked data.
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We observed that, by 3rd-grade, students were able to symbolize varying quantities 
with letters, and they seemed to have an emergent understanding of what these 
symbols represented. (We did note some confusion as to when a variable represented 
the number of dogs versus the number of eyes (or eyes and tails).) Moreover, third-
grade students could express relationships in symbolized form (e.g., "number of eyes 
is 2n"), although they did not fully symbolize the relationship in a form such as 
'f(n)=2n'. In 4th grade, some students wrote '� � 3 = n' after constructing a t-chart. 
Although students primarily used words and symbols to describe the function, one 
3rd-grade class did construct a line graph representing the number of dogs versus the 
total number of eyes (see Figure 2). 
Finally, the ways students labelled their t-charts reflected increasingly sophisticated 
language. In grades PreK-1, t-chart headings were described in words ('dogs'; 'eyes'); 
in 2nd-grade, t-charts were labelled as "number of dogs" and "number of eyes". By 
3rd-grade, symbols such as 'D' and 'E' were used for the number of dogs and eyes.  
All of this suggests that teachers were able to scaffold students' thinking from a very 
early age so that diverse representational and linguistic tools became an increasing 
part of students' repertoire of doing mathematics. 
How students accounted for varying quantities 
Although finding patterns and predicting future values seemed understandably 
tentative in grades Pre-K–1, there were notable instances of this, such as the protocol 
recorded earlier in which kindergarten students found an "even" pattern in their data. 
When using a t-chart, 1st-grade students noticed patterns in how the number of eyes 
varied, and they described patterns in everyday language using both additive 
relationships ("we are counting by 3's) and multiplicative relationships ("double" and 
"triple"). Skip counting seemed to be the most common process for finding unknown 
values, and additive relationships were more common than multiplicative ones. By 
2nd-grade, students were able to articulate a multiplicative relationship using everyday 
language ("You have to double the number of dogs to get the number of eyes") and 
use this to predict the number of eyes for 100 dogs without counting the eyes. In later 
grades, students needed increasingly fewer data values to determine a functional 
relationship and make predictions. 
What we found particularly compelling in the data was how early students began to 
think about how quantities co-varied. One kindergarten class described an additive 
relationship between the number of eyes and dogs as "every time we add one more 
dog we get two more eyes", indicating that they were attending to both the number of 
dogs and eyes simultaneously and were able to describe how these quantities co-
varied. In 1st-grade, students identified a multiplicative relationship of "doubles" and 
"triples" to describe the number of eyes and the number of eyes and tails, 
respectively, for an arbitrary number of dogs. In 2nd-grade, students also saw a 
multiplicative relationship ("doubles"; "If you double the number of dogs you get the 
number of eyes"). The observation that the pattern "doubles" or "triples" indicates 
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that students were attending to how quantities corresponded. That is, some quantity 
needed to be doubled to get the total amount of eyes or eyes and tails. Since data in 
the 'output' column (e.g., total number of eyes; 2, 4, 6, 8…) were not doubled (i.e., 
4x2�6; 6x2�8), this suggests that students were not looking 'down' the column of eye 
data (which would have resulted in a pattern of "add 2 every time" or "count by 2's"), 
but 'across'. By 3rd-grade and beyond, students seemed fairly sophisticated in their 
ability to attend to how two quantities varied simultaneously and to symbolize this 
relationship as a functional correspondence (e.g., "the number of eyes = 2n").
Although elementary grades mathematics has in more recent years included notions 
of patterning, it has not traditionally attended to functional thinking, especially in 
grades Pre-K–2. Yet, from our analysis, we found that students could engage in co-
variational thinking as early as kindergarten and were subsequently able to describe 
how quantities corresponded as early as 1st-grade. More abstract symbolizing using 
letters as variables occurred as early as 3rd-grade. We conjecture that the typical 
emphasis on pattern finding in single variable data sets in early elementary grades 
might impede an emphasis on functional thinking in later elementary grades and 
beyond. In particular, there was evidence that when 1st-grade students engaged in 
functional thinking, they were sometimes redirected to an analysis of a single 
variable (e.g., finding a pattern in the total number of eyes). This focus could be a 
habit of mind engendered in teachers by existing curricula. Ultimately, pattern 
finding in single variable data has less predictive capacity and is less powerful 
mathematically than functional thinking. There is a fundamental conceptual shift that 
must occur in teachers' thinking in order to move from analyses of single variable 
data to those attending to two or more quantities simultaneously. As a result, we 
suggest that curricula for grades PreK-5 should attend to how two or more quantities 
vary simultaneously, not just simple patterning. This study supports the claim that 
young students have the capacity for this type of functional thinking. 
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This paper reports the survey findings from a study designed to evaluate the impact 
of a large-scale professional development program for primary mathematics 
teachers. While a number of aspects of the program were considered potential agents 
for promoting on-going learning in teachers, others emerged as significant barriers 
to its maintenance. What seems to emerge as a driving force of the program was the 
perception by teachers that it would ultimately benefit the children.
There is now an extensive body of research-based literature concerned with what 
makes professional development of teachers effective. This literature provides 
guidance for the establishment of good quality professional development (Loucks-
Horsley, Hewson, Love, & Styles, 1998). Key concerns for teacher professional 
development programs have also been identified. These include the desire for 
sustained teacher change and on-going learning. Despite the extent of the literature 
and the identification of such key concerns, there is relatively little systematic 
research concerned with what ongoing teacher learning looks like and how it can be 
achieved (Garet, Porter, Desmimone, Birman & Yoon, 2001). Some of these 
concerns have started to be addressed by a growing body of literature surrounding the 
Australian numeracy project, Count Me In Too (e.g. Bobis & Gould, 2000, 
Mitchelmore & White, 2003, Wright & Gould, 2002). The identification of factors 
responsible for maintaining the momentum of this large-scale professional 
development program for primary mathematics teachers was an overarching concern 
of the study reported here.

BACKGROUND AND KEY FEATURES OF COUNT ME IN TOO 
What is happening in mathematics teaching in New South Wales’ public schools is truly 
exciting. New South Wales is an international leader in its widespread translation of 
mathematics education research into practice. 
(Cobb, 2001) 

Count Me In Too (CMIT) is a research-based professional development initiative of 
the government school system in the state of New South Wales (NSW), Australia. 
This large school system provides for a population of about seven million people, 
including approximately 1,700 primary schools. CMIT was piloted in 1996 in just 12 
schools across the state under the name ‘Count Me In’, and has progressively grown 
in reputation and implementation with over 1600 primary schools having 
implemented the program by 2003. It has also been extremely influential on 
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numeracy programs of other states in Australia and has been adopted nationally in 
New Zealand (Thomas & Ward, 2001).
From its conception, CMIT has involved the collaboration of government school 
system leaders and university-based researchers in mathematics education. The two 
main aims of the program are to professionally develop teachers so that they better 
understand young children’s mathematical development (Stewart, Wright & Gould, 
1998), and the enhancement of the mathematical achievement of young children. The 
emphasis of CMIT is on the advancement of children’s mathematical solution 
strategies.
The CMIT model of professional development emphases long-term classroom-based 
learning and aims to establish a community of learners among four linked groups—
“academic facilitators, consultants, teachers and students” (NSW Department of 
Education and Training, 2003, p. 2). To achieve this, 40 mathematics consultants 
working in designated school districts across the state, work with a group of teachers 
from a small number of schools over an extended period of time—normally 10 to 20 
weeks. During this period, consultants support teachers to acquire skills in diagnostic 
interviewing, and develop their understanding of a research-based Learning 
Framework in Number (henceforth referred to as the Framework) (Wright, 1998). 
The Framework is used by teachers to not only identify the level of development 
each child has attained but provides instructional guidance as to what each student 
needs to work towards. Further details about the Framework and the diagnostic 
interview can be obtained from Wright (1998). 

AIM OF THE CURRENT STUDY 
Initially, number knowledge in the first three years of school (Kindergarten to Year 
2) was the main focus of CMIT and systematic research-based evaluations have 
indicated that the program has been successful (e.g. Bobis, 2001; Mitchelmore & 
White, 2003). However, as the program moved into the subsequent years of 
schooling (Years 3 and 4), the nature of support provided by consultants changed and 
government administrators showed concern for sustaining the changes to classroom 
practice that had occurred and for maintaining the momentum of the program’s 
implementation. The major aim of the study reported here was to evaluate the 
program’s implementation in Year 3 and 4 classrooms. 

METHOD
The study gathered data from two different sources, namely the mathematics 
consultants and Year 3 and 4 teachers who had been involved in the CMIT program. 
Information was collected via a teacher survey, interviews and informal discussions 
with teachers and mathematics consultants. Teacher interviews and informal 
discussions were conducted as a result of three schools being selected for case study. 
Only data from the teacher surveys will be referred to in this paper.  



www.manaraa.com

PME28 – 2004  2–145

Materials and procedures 
The prime purpose of the teacher survey was to gain information about the perceived 
strengths and weaknesses of CMIT from a range of Year 3 and 4 teachers. It was a 3-
page document comprising two main parts. Part A contained 8 questions designed to 
gain information about each respondent’s school context and individual teaching 
background. Part B contained 15 questions designed to elicit individual teacher’s 
reactions to various aspects of the CMIT program. Each question in Part B required 
an open-ended response. For example, Question 16 requested information about the 
barriers or challenges teachers perceived they would face when implementing CMIT 
in their classrooms in the future.   
Surveys were distributed to teachers eligible to participate in the evaluation by their 
respective district mathematics consultant. Teachers were eligible to receive the 
survey if they (a) had completed the initial diagnostic testing of their students, and (b) 
had implemented CMIT lessons for at least five weeks. One hundred surveys were 
distributed. 
Data from each survey were transferred to a text file. Each text file was then 
transported into a qualitative data analysis computer program, QSR NUD*IST 
(1997), to assist with analysis. Contextual and biographical data from Part A of the 
survey were collated using text searches. Open-ended responses to items in Part B of 
the survey were categorised into major themes and then coded for analysis. 

RESULTS AND DISCUSSION 
Despite 100 surveys being distributed, 108 were returned with representations from 
20 of the 40 school districts across NSW. The extra surveys were the result of 
teachers copying and distributing it to colleagues. Due to either missing data or the 
lateness with which a number of the surveys were returned, only 95 were included in 
the final analysis. 
Contextual and biographical data from Part A of the survey will be reported briefly so 
as to provide an indication of the nature of the sample. Open-ended responses to 
items in Part B of the survey will be reported using the major themes identified for 
each item. Given limitations of length, the discussion will focus mainly on what 
respondents perceived to be the most effective aspects of the program and the barriers 
to its successful implementation.  
Contextual and biographical information 
The sample of Year 3 and 4 teachers who responded to the survey was fairly 
representative of the general primary school teacher population in NSW, namely, the 
majority were female (83%) in the 41 to 50 age range (63%) with more than 21 years 
teaching experience (59%). Seventy-two percent of teachers who responded to the 
survey had been teaching Year 3 and/or 4 for more than 4 years and 37% of these had 
been teaching the same grade for more than 7 years. This indicates that the teachers 
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who completed the survey were an extremely experienced group, and particularly 
experienced at teaching Year 3 and 4 students.
The majority of teachers (71.6%) who responded to the survey had been 
implementing CMIT in their classrooms for only one year or less. Only 11.6% of 
teachers had implemented the program for two or three years. Hence, while 
experienced teachers, their experience with the CMIT program was still very limited. 
Open-ended responses 
Generally, teachers’ responses to CMIT were very positive. Only 2 respondents 
indicated that, if the decision to implement CMIT were their own, they would select 
not to continue with it.  
While commenting on the impact of the program, 69.5% of teachers considered their 
attitude to mathematics and the teaching of mathematics had improved as a result of 
their involvement in CMIT. Many teachers attributed the change to seeing the 
“children improve their skills” and “understanding the reason behind what we do”. 
Others considered their attitudes had changed towards the “use of textbooks”, 
“written algorithms” versus mental computation and “allowing games in the 
classroom”. Nearly every teacher who considered their attitude toward mathematics 
had not changed as a result of their involvement in CMIT (14.7%) thought that the 
program merely confirmed their prior beliefs about mathematics and supported 
methods of teaching that they had always used.
Content knowledge in a variety of areas was considered to have increased by 48.3% 
of respondents. Some teachers considered that the “deeper understanding of the 
philosophy” surrounding CMIT gave them greater “ownership” and “understanding” 
of a broad range of content leading “to a greater interest” in mathematics. However, 
the majority of teachers highlighted an increased knowledge in specific aspects of 
mathematic content. For example, teachers mentioned their new knowledge about the 
importance of “arrays to teach multiplication and division”, the “better understanding 
of place value” and how it “is integral to all number understanding”. The most 
frequently mentioned area of content knowledge to improve related to mental 
computation. Many teachers considered that “it has affected the way I mentally 
compute now and I pass this on to the children” or that they were now “aware of the 
value of mental computation skills” and so emphasised this more in their classrooms. 
Other teachers considered that their knowledge “of what to teach had not changed, 
just how to teach it”.  
The majority of teachers considered that their understanding of how children learn 
mathematics (71.6%) and the way they taught mathematics (77.9%) had changed the 
most as a result of their involvement in CMIT. One teacher commented that “it’s 
scary what I didn’t know” about how children learn mathematics. The majority of 
responses made reference to a “better understanding of the developmental stages in 
children’s thinking” and knowing “how to move them onto the next stage”. This 
“better understanding” or “insight as to how children learn” and the “different 
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strategies children use” was usually a result of the diagnostic interview or their 
understanding of the Framework.
Reported changes to the way teachers taught mathematics varied enormously. 
However, there were 4 aspects that were mentioned more frequently. Foremost 
among them was the use of “more hands-on, fun games” that were selected on the 
basis of children’s “strategy development”. A second aspect mentioned regularly 
concerned the emphasis on thinking strategies. In particular, the use of multiple 
methods for mental computation was highlighted by teachers. For example: 

Now I ask them instead of telling them. I give them time to think and we have a very 
enjoyable and productive environment. (There is) much more sequential development of 
teaching number with a greater commitment to using a variety of strategies to encourage 
thinking mathematically. 

The majority of teachers indicated that they considered CMIT to be “worthwhile” and 
therefore willing to continue with the program, but only 25.3% of teachers indicated 
that they were entirely satisfied with either their initial training or the follow-up 
support they received to implement the program. Fifteen percent of teachers 
considered their training ineffective with the remaining respondents indicating that 
they were only partially satisfied with the effectiveness of their initial training and 
support to implement CMIT. Teachers who indicated most satisfaction with their 
training and the manner in which they were implementing the program were those 
who had received considerable in-school support in the form of classroom visits from 
their district mathematics consultant.
When asked to comment on the most helpful aspects of their training, teachers 
identified 5 crucial features—the practical resources and activities, the assessment 
process, classroom support, the influence of significant people and the opportunity to 
share ideas. Practical resources and activities were highlighted by 38.9% of 
respondents as being extremely helpful during the program “as I could go straight 
back to my classroom and do them (even though I was still struggling with the 
conceptual framework)”. The second most frequently cited aspect of the training 
considered helpful by teachers, was the assessment (diagnostic interview). While a 
number of respondents thought the main aim of the program was to introduce the 
assessment interview, 29.5% indicated that “learning how to assess” was the “most 
useful” aspect of their training. For example: 

…to find out how a child thinks and where they are up to. Then to teach to that, and 
assess again later. This helped me to become very familiar with the learning framework 
and the range (of abilities) in my classroom. 

Another frequently cited aspect of the program considered to be most helpful to 
teachers was classroom support (22.1%). Classroom-based support in the form of 
demonstration lessons and class visits by consultants was only provided to a small 
number of Year 3 and 4 teachers during the introduction of the program. Despite this 
limitation, its effectiveness was acknowledged by the majority of those who received 
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it. Teachers considered the classroom support “brought the nuts and bolts (of the 
program) to life”. 
Aspects of the CMIT training considered ineffective or “least helpful” by teachers 
included “the overload of information” (13.7%). Teachers referred to the initial 
training days as “daunting”, “crash courses” where they were “bombarded with paper 
and activities”. Many teachers considered their training to be “too much to cope with 
at once” with “too little follow-up support”. While some teachers indicated that they 
“struggled at first”, they “eventually worked it out” but it was “stressful and time 
consuming” when they “did not know what it looked like to implement”. Another 
aspect of the initial training that received heavy criticism from 27.4% of teachers was 
the lack of a “systematically organised folder of activities and resources”. Teachers 
“felt overwhelmed” by the need and “time required to make so many resources”. 
While the practical ideas and resources introduced during initial training days were 
perceived to be a positive aspect of the training by 38.9% of teachers, the initial 
production and implementation of them was perceived negatively by an equal 
number of respondents. 
When considering the challenges or barriers to the implementation of CMIT in their 
classrooms, 45.3% of teachers referred to issues of “time”. This is consistent with 
previous evaluations of CMIT (Bobis, 1996; 2000), where the problem of not enough 
time is regularly raised by teachers. In the current study, teachers considered there to 
be a lack of time “to meet” with other teachers “to gain new ideas”, to “complete the 
testing”, “to make the resources”, “to think of different ways to utilise the same 
resources”, “to do the grouping”, “to teach the activities”, “to maintain and organise 
the resources”, or “time to feel comfortable with the program and feel a sense of 
direction”. While lack of time was the most commonly cited challenge to the 
implementation of CMIT, a number of teachers acknowledged that their concerns 
would be reduced in subsequent years of its implementation once the initial resources 
were made and they had become more familiar with the assessment procedures. 
The second most frequently cited challenge facing teachers related to resources 
(31.6%). While some of the problems concerned the “time” for making and 
maintaining them, other issues included: “becoming familiar with all the materials 
available”, “having easy access to resources”, “having enough funds to purchase the 
necessary resources”, “having enough resources for each teacher to avoid sharing”, 
“having enough activities for all the children” so they “don’t get bored with the same 
ones”, and “getting the resources organised”.  
Class management issues were mentioned by 25.3% of teachers as presenting a 
challenge to their implementation of CMIT. They included problems associated with 
“not knowing what it looked like in the classroom”, “ensuring that all children are 
learning from the group activities and not letting others do the thinking for them”, the 
increased “noise” level due to group work and “management of multiple 
levels/games in the class”. In addition, a number of teachers considered large class 
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sizes and lack of space to do group work a barrier to their implementation of the 
program.

SUMMARY AND CONCLUSION 
The reporting of results in this paper have focussed on what respondents perceived to 
be the most effective aspects of a large-scale professional development program for 
primary mathematics teachers and the barriers to its successful implementation. 
While aspects of CMIT considered most effective included the practical resources 
and activities, the assessment process, the influence of significant people, classroom 
support and the opportunity to share ideas, a number of factors emerged as significant 
barriers to teachers’ implementation of the program. These factors predominantly 
related to issues of time, resources, class management and information overload.
Inherent in the reporting of these findings is the concern for the identification of 
factors likely to maintain the momentum of the CMIT program. What factors are 
more likely to sustain teacher change and promote on-going learning? A number of 
CMIT features are potential agents for such growth in teachers. For instance, one 
respondent commented:

What a change—a program which supports students and teachers at the same time—
that’s how we create life-long learning. 

A number of teachers volunteered concluding comments regarding their overall 
opinion of CMIT at the end of the survey. Despite a high proportion of teachers 
indicating some significant issues with the implementation of the program, 30% of 
teachers communicated their intentions to continue with its implementation mainly 
because they considered it would ultimately benefit their students. This sentiment is 
characterised by one teacher’s comments: 

It is taking time for some teachers to change habits and attitudes of 20 years—but they 
are willing to have-a-go as long as there is support and they can see it benefits their 
students.

Hence, the factor that seems to emerge as assuming greater significance than 
concerns surrounding issues of time, resources and the like, is teachers’ inherent 
perception of the program’s worth for children.  
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FROM FORMAL TO SEMI-INFORMAL ALGORITHMS: THE 
PASSAGE OF A CLASSROOM INTO A NEW MATHEMATICAL 

REALITY
Ada Boufi Frosso Skaftourou 

University of Athens 

In contrast to the traditional top- down approach, a bottom-up approach is proposed 
by current reform in mathematics education.  According to this alternative proposal, 
algorithmizing is the activity in which students should be involved.  What can we do 
when we want to enact such an algorithmizing approach in a classroom and our 
students have already been instructed the algorithms in a traditional way? The 
students have to move from a school-based to an inquiry-based mathematical reality. 
Is the passage from one reality to the other so easy? The focus of this paper is on the 
difficulties that a fifth-grade classroom met as we tried to revisit the multiplication 
and division algorithms, which had been taught in a traditional way. How these 
difficulties influenced the emergence of mathematical content? 

INTRODUCTION
When we conduct a classroom teaching experiment, our general purpose is to 

attempt a change of the “school mathematics tradition”. An “inquiry mathematics 
tradition” is what we are looking for (Cobb et al., 1992).  Such a change implies that 
with our support students will come to experience mathematics in a different way. 
From a mathematical reality where students comprehend mathematics as a set of 
ready-made propositions and procedures, a new inquiry-based mathematical reality 
where mathematics is viewed as a human activity has to emerge.  

According to Mehan & Wood (1975), realities are permeable and so the passage 
to a new reality is feasible. However, this passage is fraught with difficulties if we 
take into account their characterization of realities. As they claim, realities are 
sustained through the reflexive use of bodies of knowledge in interaction. Reflexivity 
means that a reality is not easily abandoned. Even when counter evidence is 
provided, it reflexively becomes evidence for the sustenance of an assumed reality. It 
is then interesting to investigate the difficulties that may occur as the members of a 
classroom are guided towards an inquiry-based mathematical reality.  

Students in a fifth-grade classroom had already memorized the steps of the formal 
multiplication and division algorithms. Now they have to revisit these algorithms in 
order to extend their practice to numerals with any number of digits. In previous 
grades, instruction had been based on the use of concrete representations 
accompanying the explanation of numerical examples. Drill and practice always 
preceded the application of the algorithms to the solution of problems. Lack of 
proficiency and insight, as well as low applicability are usually mentioned as the 
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negative effects of this approach (Hart, 1981; Resnick & Omanson, 1987). Students 
come to identify understanding to following the teacher’s or the textbook’s 
procedural instructions to obtain correct answers. On the other hand, as algorithms 
are taught out of context, students do not know when it is appropriate to apply them. 
A school mathematics based reality was thus well established by the students of this 
classroom.

To avoid the negative effects of this top-down approach, an alternative bottom-up 
approach would be to support students’ construction of algorithms based on their own 
activity. Starting from contextual problems students can generate their own 
procedures. Through shortening and schematizing, these procedures can take the 
form of the conventional algorithms. Even if students don’t reach formal algorithms, 
the quality of their understanding would counterbalance the development of semi-
informal algorithms (Gravemeijer, 2003).  In this way, algorithmizing becomes the 
main practice students are involved in (Freudenthal, 1991). The reinvention of 
algorithms makes students’ mathematical reality inquiry-based.

For the students of the above-mentioned classroom the bottom-up teaching 
approach had to be adjusted, if we wanted them to experience an inquiry-based 
mathematical reality. As we had to revisit algorithms with these students, their 
difficulties in establishing such a reality would be more easily investigated. These 
difficulties would be greater due to their instrumental understanding of algorithms. 
The focus of this paper will be to examine the role of these difficulties as they 
influence the emergence of mathematical content in this classroom.  In this process, 
the relations between the old and the new reality will come to the fore and the 
passage into a new mathematical reality will be illuminated. Apart from its 
theoretical importance, our attempt has also practical implications. Teachers 
intending to develop a bottom-up teaching approach for algorithms cannot usually 
enact it. Students’ prior experiences inhibit their attempts and so they are skeptical 
about their teaching effectiveness.

THEORETICAL FRAMEWORK  
Studying the difficulty of the passage of a traditional classroom into an inquiry-

based mathematical reality, the emergent perspective on classroom life is of 
relevance (Cobb & Yackel, 1996). Any mathematical reality “is becoming” through 
the coordinated efforts of the individual students as they participate in diverse ways 
in the communal mathematical meaning-making activities of their classroom. 
Students’ taken-as-shared meanings emerging through their own interactions can be 
considered as the building blocks for the construction of their reality. In turn, this 
reality may constrain or enable their individual constructions. The reflexivity 
between the individual and social aspects of their mathematical activity in 
constructing meanings for the multiplication and division algorithms will be assumed 
as we analyze individual students’ contributions.  
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METHODOLOGY  
Our data is based on a fifth grade classroom in a public school of Athens at the 

beginning of the school year 2003-04. It consists of 15 video recorded lessons, the 22 
students’ worksheets and written tests.  The presenting author taught most of the 
lessons, aiming in students’ understanding of multiplication and division algorithms. 
Development of students’ multiplicative reasoning about quantities was considered 
necessary both for understanding the algorithms as well as the subsequent unit that 
focused on fractions. 

For this purpose, we prepared an initial set of instructional activities based on 
Gravemeijer’s (1998) heuristic of emergent models. A learning path has been 
anticipated through which students could be supported in developing insightful ways 
of reasoning with algorithms.  More specifically, we expected that students’ 
reasoning with a ratio table would emerge as a model of informal solutions to 
multiplication and division problems. Eventually, we anticipated that reasoning with 
the ratio table (see results section below) would serve as a model for the construction 
of semi-informal algorithms and would provide opportunities for our students’ 
developing interpretations of the formal algorithms. However, it must be noted that 
the set of activities used in our classroom would be tailored to the students’ needs. 
Their actual trajectory may not match our hypothetical learning path.

As we conduct our analysis, the construct of classroom mathematical practice 
developed by Cobb and his colleagues (Cobb et al., 2001) will be useful. This 
research group differentiates between three aspects of a mathematical practice: (a) a 
taken-as-shared purpose, (b) taken-as-shared ways of reasoning with tools and 
symbols, and (c) taken-as-shared forms of mathematical argumentation. We will be 
focusing on instances where individual students’ ways of acting can be traced back to 
their school mathematics based reality. Their relationship to the above three aspects 
of a practice will allow us to understand the difficulties the passage to an inquiry-
based mathematical reality entails. The delineation of mathematical practices as a 
means to describe the inquiry-based reality established in our classroom is not of our 
concern in this paper. However, one may notice that the instances we will be 
referring to may belong to different practices.  

RESULTS
From formal algorithms to informal ways of operating 
In our first lesson, students were asked to solve multiplication and division 

problems. What we noticed was that students: (1) did not have any different solutions 
to offer when solving a problem apart from using the standard algorithms, (2) were 
uncertain about which operation to perform, and (3) did not have any meaning for the 
steps of the algorithms used. No doubt that the school-based mathematical reality was 
overarching and constraining their activity. On the other hand, students appeared to 
have mastery of the multiplication and division formal algorithms.  
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For the next lesson, we distributed a worksheet with the solutions of hypothetical 
younger students on a multiplication problem. The problem on which students were 
invited to explain and justify the solutions was: “A bookcase has eight shelves. Each 
shelve has 23 books. How many are all of its books?” The intent of this task was to 
give students the opportunity to reflect on multiplicative relationships. The role of 
these relationships in building the algorithms might then be approached through 
properly designed solutions.  

As an example, repeated doubling was used as a means to calculate the answer: 
  23 46   92 
+23       +46 +92 
  46 92 184 
Below is the dialogue between the teacher and a student who was willing to 

explain the above solution: 

1  T: What did this child do? I mean how did she think?  
2 S1:  Additions. 
3 T:  Can you explain what did she do?   
4 S1:  She added 23 and 23 and she found 46. Then she added once more…46 and 

46 and she found 92. And then she again added 92 and 92 and she found 184.   
5 T:  She found the same answer! But do you understand her way? Can someone 

else explain to us…why did she do these additions? [Students do not 
respond] 

Initially, students were not in a position to see any connection between the above 
additions and the situation. Students merely read the additions. Searching for a reason 
behind a calculation was not a goal in their mathematical reality. Criteria for judging 
when an explanation would be appropriate were lacking. That is why their 
explanations were exclusively calculational.

Similar tasks along with our support (i.e. drawings, symbolizing their explanations 
on the board, etc.) helped students to start interpreting solutions in a multiplicative 
way. These interpretations were the best we could achieve from students deeply 
immersed in the school mathematics reality. The form of their arguments was getting 
a contextual character. Operating informally in multiplication and division situations 
was finally instigated.

Comparing the algorithms with carefully chosen exemplary solutions had also 
become a topic of discussion. Detection of their similarities and differences came as a 
result of these discussions. However, we should not forget that our students did not 
invent the solutions. These had been given ready-made. This significant deviation 
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from the bottom-up approach did not guarantee the re-construction of meaningful 
algorithms.  

From informal to semi-informal ways of operating 
To support our students’ development of their own semi-informal ways of 

multiplicative operating, we introduced the model of ratio table in the classroom 
(National Center for Research in Mathematical Sciences Education & Freudenthal 
Institute, 1998). The opportunities our students had in interpreting multiplicatively 
solutions of hypothetical younger students might now be utilized. Reasoning with the 
ratio table could be based on this prior experience. Acting with this model 
insightfully was expected to ensure a meaning for the operations of multiplication 
and division, as well as for their algorithms. With these conjectures in mind, we told 
students about a fourth-grader who was used to organize his solutions with the help 
of a table. In the problem: “A crate of lemonades contains 24 bottles. If a 
supermarket buys 49 full crates, how many bottles has it bought?” this student’s 
solution was presented as follows: 

Crates  1 10 5 4 9 40 49 
Bottles  24 240 120 96 216 960 1,176 

Our students did not seem to have any difficulty understanding this fourth grader’s 
reasoning with the ratio table.  In the same lesson, starting from a multiplication 
problem, students recorded their different solutions on ratio tables and compared 
them, in terms of their efficiency. It was not but until a few lessons later, that a 
measuring situation involving the division 135:12, led a student to the following 
table:

Minibuses   1  3  5 135 
Students  12  36 60  

 X 3
             X 5 

Perhaps, the use of the ratio table was confounded with the use of place value tables 
like:

Hundreds Tens  Units  The number 
1 3 5      135 
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Other students did not strongly object his way of using the ratio table. In addition, 
it was not much later that similar solutions were given by a group of students in a 
written test. We were alerted by this instrumental use of the ratio table. It seemed that 
the use of this tool would come to have in this classroom a meaning related to the 
school based mathematical reality. Rather than students reasoning about quantities in 
multiplicative ways, they were looking for patterns in the numerals. From our 
perspective, the inquiry-based mathematical reality was at risk.

Asking students to anticipate the steps they would have to take, as they were using 
a ratio table, might help them to change the purpose of their activity. Questions like: 
“Which number are you looking for?” “Where is the unknown number going to be on 
your table?” and “Can you say in advance, the steps you intend to take?” were 
instrumental in reorienting students’ actions with the ratio table. Through these 
questions students’ activity was gradually focused on explaining the reasons for the 
steps they proposed.

From semi-informal ways of operating to semi-informal algorithms 
Eventually, students could reason with the ratio table and solve a variety of 

multiplication and division problems. By the end of the instructional sequence, we 
surprisingly saw that there were students who were still choosing operations at 
random. For example, in a multiplication problem, they would try to divide the given 
numbers by using the division algorithm. For these students, the use of the ratio table 
did not evolve into a model for reasoning with the algorithms. Even if they could use 
this model, they could not relate it to the multiplicative relationships implied in the 
situation at hand. Apart from the inherent difficulty that such an undertaking 
involves, the vestiges of their old reality were still prevailing.  

Encouraging students to estimate their answers did not prove to help students 
increase their awareness of structuring problems multiplicatively. To avoid the 
random selection of operations, we were inviting students not to be thinking of which 
operation to select. Starting their work from the ratio table did not encase them within 
the vicious circle of their school based mathematical reality. Reasoning with the ratio 
table came to constitute a semi-informal algorithm. Efficient and sophisticated 
solutions were commonly produced in our classroom. The problem: “ For 5 days 
someone was paid 140 €. How many euros was he paid for each day?” could be 
solved by methods like: 

Euros  140 280 28 
Days   5 10 1 

Euros of each day  1 2 10 20 8 28 
Total amount 5 10 50 100 40 140 
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CONCLUSIONS
We tried to change the approach by which the multiplication and division 

algorithms had been taught in a fifth-grade classroom. A pure algorithmizing bottom-
up approach was not feasible. Students already knew the algorithms and even more 
so they had constructed a school-based mathematical reality. The passage to an 
inquiry-based mathematical reality cannot be automatic. Students’ old habits were 
coming to the fore and influenced the learning path of the classroom.  

One may view these habits as inhibiting the enactment of an algorithmizing 
approach. In our classroom these difficulties functioned as opportunities to redesign 
the hypothetical learning trajectory we had in mind when we started our teaching 
experiment. However, students’ development of semi-informal algorithms was our 
only alternative if we wanted students to walk away from their old reality. We should 
note that the quality of understanding in this classroom was not only a matter of the 
mathematical practices we tried to develop. The classroom social norms were also of 
our concern.

The influence of our students’ school-based mathematical reality on their 
development of multiplicative reasoning declined. Their passage to an inquiry-based 
mathematical reality is still incomplete. At least, we hope that our students have 
already experienced the distinction between the two realities.     
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A MEASURE OF RULERS - THE IMPORTANCE OF UNITS IN A 
MEASURE
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Recent publications continue to show that significant numbers of students in junior 
grades, while competent in basic ruler skills, seem not to have acquired important 
concepts about how rulers work and units of length. This paper reports on the results 
of a set of tasks completed by students from Grades 5 and 6. The results show that 
many students at the end of their primary schooling are unable to identify the unit of 
measure for length on a ruler or on the commonly used one centimeter cube. It is 
suggested that early measurement activities include explicit instruction in the 
relationships between informal units and the construction of scales on rulers. 

Introduction
In recent years increasing attention has been paid to the teaching of measurement in 
mathematics lessons. Analyses of data gathered through regular large-scale testing by 
The National Assessment of Educational Progress (NAEP) show that while students 
have shown steady overall improvement in basic measurement skills and concepts 
since 1990 there appear to be significant gaps in student understanding of how scales 
on formal measuring tools work (Strutchens, Martin and Kenney, 2003). This 
becomes apparent when students are asked to measure lengths not aligned to zero or 
when the scale to be used has no numbers on it. Students seem not to have 
constructed adequate understandings of the property of length (Wilson and Rowland, 
1993) and of the linear nature of units of measure (Bragg and Outhred, 2001). It is 
also apparent that while most students by Grade 5 appear competent with basic paper 
and pencil measurement and construction tasks many students are also unable to 
indicate what is being counted in the measurement process (Bragg and Outhred, 
2000a).
Hiebert (1984) suggested that the discrepancy between procedural knowledge and 
conceptual knowledge may lie in the student’s failure to link classroom experiences 
with the formal symbols. This may occur, for example, at the point where 
understandings about units of measure become represented in the markings and 
numerals on a scale (Stephan and Clements, 2003). “The hash marks and numerals on 
a ruler therefore, represent the result of iterating 12 inch-sized units” (p.4).  Many 
students, however, may come to understand measuring length solely as an exercise in 
applying some rules for the alignment of an object and the reading of a number 
(Bragg and Outhred, 2001). 
Bragg and Outhred (2001) showed that significant numbers of students in Grades 3-5 
are unclear about what is being counted when they use one-centimetre cubes to 
measure length even though they were able to align and count them correctly. This is 
important because students in Grade 3 use the same cubes to measure area, perimeter 



www.manaraa.com

2–160  PME28 – 2004

and then volume. This confusion is also apparent when students are asked to indicate 
which feature of the scale on a ruler is counted when measuring a length. Younger 
students were more likely to colour in the spaces between the unit markers while 
older students were more likely to count the unit markers (hash marks) themselves.  
For these students “…the marks on the ruler “mask” the intended conceptual 
understanding involved in measurement” (Stephan and Clements, 2003, p.5). Some 
students simply did not believe that anything was counted at all, believing instead 
that the number at the end of the object was the measure. 
The process of iteration is a fundamental concept that must be learned early in the 
measurement curriculum (Barrett, Jones, Thornton, and Dickson, 2003). Once a unit 
has been selected the measure obtained by counting tells how many of these units, 
placed end to end, are used to cover the length of the object. The tendency to count 
unit markers when the scale is unfamiliar would seem to indicate that students may 
have connected the iteration of informal units with the most prominent feature of on 
the ruler, the unit marker, even though the unit markers are at right angles to the 
length of the object or line being measured. This indicates that some students may 
understand the measurement of length using informal units and applying a ruler to be 
two separate skills. The first skill involves the correct use of a ‘count-the-object or -
action’ process to determine a length while the second skill uses rules about the 
correct alignment and reading to obtain a measure with a ruler. It has therefore been 
suggested that teachers should not rely on paper-and-pencil tests of measuring as an 
indication that students have acquired a deep understanding of units and scales 
(Bragg and Outhred, 2000b). 
Results of both NAEP and TIMMS (Lokan, Ford and Greenwood, 1996) indicate that 
the difficulties continue into the high-school years. Since the results previously 
reported by Bragg and Outhred (2000b, 2001) covered Grades 1-5 it was apparent 
that information was needed for Grade 6 students who had completed their 
foundational instruction for the measurement curriculum. An investigation of this 
type is timely as research is beginning to point to the need for teachers to focus on the 
meaning of the numerals on scales (Clements, 1999), and the conceptualisation of a 
length as a movement in space (Lakoff and Nunez, 2000) away from a point of origin 
that becomes zero on a scale (Lehrer, Jaslow and Curtis, 2003).
Methodology 
Two studies are reported in this paper. A comparison is made of the results for Grade 
5 students in the first study with the results of Grade 6 students using 5 of the tasks 
from the original study.  The Grade 5 data form part of a larger study involving 120 
students from Grades 1-5 (aged 6-10 years) from three state primary schools in a 
medium to low socio-economic area of Sydney. The second study involved 89 Grade 
6 students (aged 11-13 years) from a non-selective private girls school in northern 
Sydney. Following the survey, the Grade 6 students were interviewed in small groups 
of 5 to 7 to try to ascertain what the students understood about the concepts that were 
tested. The first researcher interviewed all students towards the end of the school year 
when they had completed the year’s instruction in measurement. 
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Tasks 1 and 2 were designed to force students to apply their knowledge of rulers in 
unfamiliar contexts. Task 1 was an ‘offset- ruler’ question requiring the students to 
state the length of a shoe printed above a ruler between the 3 and 8 cm unit marks. 
Task 2 asked the students to measure an 11cm line printed above a ruler without 
numerals. Tasks 3 and 4 required the students to mark centimetre units on a ruler or 
centimeter cube. Task 5 asked students to draw what they thought one centimetre 
would look like if they could see it between the forefinger and thumb drawn on the 
page.
The tasks have been grouped below to emphasise their conceptual similarities. They 
were presented in the same order to all students but were not presented in the order 
seen below. 

Table 1   Tasks involving a scale 
Task Description Knowledge

1 Measure object above a ruler 
printed between the 3 and 
8cm marks.

Length may be measured by counting spaces 
on a unit scale. A numeric scale can be 
applied to a congruent set of marks.

2 Measure a line using a ruler 
with unit markers but no 
numerals.

As for Task 3. 

Table 2   Tasks involving identification of linear units
Task Description Knowledge

3 Draw the linear unit on a 
picture depicting a familiar 
representation of a 
centimetre: thumb and 
forefinger placed 1cm apart.

Identification of the linear unit in a pictorial 
representation.

4 Identify the linear units on a 
ruler for a given measure.

Linear units are separated by marks. A 
numeric scale aligned with marks gives the 
number of linear units from the origin.

5 State what part of a 1cm cube 
is used when measuring a 
length.

The length of an object gives the 
measurement unit (its area and volume are 
irrelevant).

Results and Discussion 
The results for Task 1 show that the number of students able to state the correct 
length improved in Grade 6 (69%) compared with the Grade 5 students (50%). 
Almost a quarter of the Grade 6 students (24%) gave the measure as the numeral 
aligned with the end of the object. In the small group discussions students were asked 
why they used this strategy. Ellie’s response was typical of the 21 in this group: “You
just read the number at the end.” Suzie continued, “That’s because you can’t move the 
ruler.” When challenged to re-measure the shoe with their own ruler, most were able 
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to see why their original measures were incorrect. Several, however, remained 
unconvinced, unsure whether to measure from one. 
Unlike the Grade 5 students who were more likely to count the spaces, the successful 
Grade 6 students counted the unit markers from zero. There was also an increase in 
the number of students who used the most sophisticated strategy of finding the length 
by subtraction; (12% versus 3%). Few students use this method even though it is used 
to find a remainder in word problems. Students fail to recognize the ‘offset-ruler’ task 
as belonging to the class of ‘difference’ problems. The length of the object ‘offset’ on 
a ruler may be thought of a subset of the length between zero and the end of the 
object when aligned with a ruler. Classroom tasks explore the concept of additivity, 
so it would seem to be important for teachers to include tasks that require students to 
find measures by counting units on scales not aligned with zero. Students need 
explicit instruction in the use of the ‘rename as zero’ or the counting of the spaces 
between unit markers provided that students understand that the measure itself 
counted linear subunits. A number of students stated that there was “…nothing on the 
edge of a ruler” and that the numbers “pointed to the lines” [unit markers].  

Table 3 Results as percentages correct for Tasks 1 to 5 
Task Name Grade 5 Grade 6 Comments for Grade 6

1 The Offset Ruler 50% 69% Measure as the end of the 
object 24%

2 The Ruler Without 
Numbers

54% 37% Count unit marks from one 
53%

3 The Finger- Thumb 
Picture

54% 74% Draw cube 7%, square 6%, 
ruler features 11% (e.g. little 
unit markers or numbers)

4 Units on a Ruler 42% 6% Indicated unit markers 69%, 
21% coloured spaces

5 A Centimetre on a Cube 52% 71% Indicated square 20%, cube 
8%

The results for Task 2 were unexpected. The number of students giving the correct 
measure fell to 37% in Grade 6, with just over half of this group (53%) counting the 
unit markers from ‘1’. This is compared with 54% of the Grade 5 students. In the 
discussion groups the majority of the students quickly saw that their measure was 
incorrect when they checked their answers with a ruler. Many of them noted that they 
should have counted the ‘first little mark as zero’. As with Task 1 it seems that the 
older students were more likely to count unit markers than the spaces between the 
markers. Esther noted that she “just forgot about the zero”. The students were asked 
why they thought they got confused about where to measure from on a ruler. The 
majority commented that the measuring they did in the early grades only involved 
counting from one. Georgia said that the teacher in her previous school told them that 
“When you use a ruler you don’t have to count anything. You just remember to line 
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up the start with zero and read the number at the other end. Mrs. Z. used to get a red 
marker pen and draw over the nought so we would remember. I always got it right 
then.”
In Task 2, the unexpected drop in numbers of correct answers in Grade 6 may be due 
to the fact that greater emphasis is being placed on more complex measurement 
applications with little time being spent on revision of basic concepts. These results 
reflect the way students understand the use of a ruler and the cues used for correct 
alignment. The zero printed at the first unit marker may serve only to direct 
alignment, while the number corresponding to the end of the object may be seen as 
the ‘measure’ rather than the count of linear sub-units. Indeed, some students stated 
that the number in a measure only told “…where the line ended’. The absence of a 
zero as a cue therefore elicited a counting-from-one action of the unit markers.  
In Task 3, (the Finger-thumb drawing) 74% of the sixth graders (54% in Grade 5) 
were able to represent a centimetre as a linear unit. It is interesting to note that almost 
all of the centimetre lines were drawn with a unit marker at either end. The 
prevalence of these features may be partly due to their prominence on rulers and the 
emphasis that is placed on them as students learn to mark off the iteration of informal 
units in early measuring activities. Those who were not successful were almost as 
likely to draw a square or a cube (13%) as they were to produce a drawing with ruler-
like features (11%). The confusion with squares and cubes may have resulted from 
the use of cubes for area and volume measurement without explicit reference to the 
feature of the cubes that is used for different measures. The most common ruler-like 
features were the numbers to 10 or a set of 8-10 tiny unit markers. The belief that the 
unit marker is the unit of measure was also seen in Task 4 where students had to 
indicate the centimeters on a ruler. Five students (6%) in Grade 6 correctly drew over 
the linear units at the edge of the ruler while 61 (68%) marked the unit markers and 
19 (21%) coloured in the spaces.
This confusion was also seen in the results for Task 5 (identifying a centimeter on a 
cube). While the results also show an improvement from Grade 5 (52%) to Grade 6 
(71%), it is significant that almost 30% of these students about to enter high school 
remained confused about the property applied in different measuring contexts where 
cubes are used. In the small groups almost all the students who drew or coloured 
squares or cubes referred to the use of the small cubes used in the measurement 
activities. “Well, it doesn’t really make a difference ‘cause you just count the cubes” 
(Sarah, Grade 6). “You don’t count the edges unless the question is about ‘edges and 
faces’…Oh, I know, what about the pictures in Signpost, [referring to the student 
text] we did it in Ms L.’s class. We lined up the shorts and counted them” (Emma, 
Grade 6). Teaching guidelines state that students should have a clear understanding of 
the attribute that is being measured (Outhred, Mitchelmore, McPhail and Gould, 
2003). If ‘shorts’ are used for all for length, area and volume, then it is important for 
teachers to ensure that students understand which feature is counted for each 
measure.
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Conclusion and implications for teaching linear measurement 
Research into effective classroom instruction over the last 30 years has yielded 
important information into fundamental understandings about measurement. The 
findings reported here confirm that the sequence of early measurement tasks needs to 
be carefully considered in relation to what students must know about how a scale 
works and its construction. Of particular relevance is the students’ belief that the unit 
markers are the measures. These markers are, however, at right angles to the length of 
the object or line being measured and should only be understood as the feature that 
marks the end of each unit. It would, therefore, seem critical that young students 
should learn that a length is a linear entity that can be defined. The point of origin can 
therefore be identified and written as zero. The current practice of filling the space 
between the endpoints of an object with a line of informal objects called the ‘units of 
measure’ may encourage students to consider these objects as they would for 
exercises in the counting of discrete objects. The continuous nature of measures calls 
for a counting action that does not use a ‘point-count’ action but rather a counting 
action reflecting the essential movement from the point of origin. This is only 
possible if students are able to see or visualise the linear units and that the count is 
made by moving a finger for example, along the units counting as they reach the end 
of the unit. The purpose of the unit marker may be more easily seen as the point 
where each unit starts and ends. The unit markers on rulers are particularly prominent 
features that, in the absence of careful instruction about their function, may become 
the focus of a student’s counting.  
A line used to represent a length also satisfies the requirement that students should 
learn to identify the attribute (Outhred et al. 2003) and helps students discriminate it 
from the units used to measure length and volume. The consequence of using a 
concrete representation of a length is that the unit of measure will be defined by the 
length of object or action chosen as the informal unit. A line of objects, for example 
paper clips, allows the students to draw the unit markers and when the clips are 
removed the linear units thus created are counted from zero not the unit markers or 
the informal units. An analogous relationship is created that has a closer fit to the 
form of a scale. This relationship may also be satisfied when students iterate a single 
unit or use an action such as hand spans. Early measuring activities should emphasise 
the measuring process as having three steps: 1) Defining the length and assigning 
zero, 2) iterating the unit and 3) counting the linear units created. Teachers should 
also be aware that counting skills and strategies used to find a measure should be 
introduced and discussed with the students. Since a correct measure can be found by 
counting the spaces or unit markers it is critical that students understand what the 
measure obtained actually counts.
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In the Serpent’s Den: Contrasting Scripts relating to Fear of 
Mathematics 

Chris Breen, School of Education, University of Cape Town 

The author reports on data taken from a single case study of a mathsphobic student 
teacher engaging with a Mathematics content and method course as part of her pre-
service course in primary teaching. Sample comments are given from the journals of 
both student and lecturer as the course progresses. The interpretation of this data is 
then explored from a variety of perspectives in order to begin to untangle the 
complex web of factors, which interact with each other in this topic. 
INTRODUCTION

For twelve years I watched it writhe upon my page; fearful of its poison – 
that feeling of hopelessness, which it can so easily induce. 
‘Maths is everything’     ‘Without Maths you are nothing”    
I passed.  Every year I passed.  At the end of school I derived much 
pleasure from the belief that I would never again have to bow down to 
Maths – the conqueror serpent. My delusion has since been shattered.  I 
must now face Maths again.        (Pegg 2001)

The above quotation comes from the journal of a student taking the one year pre-
service Post-graduate Certificate in Education (PGCE) (Primary) at the University of 
Cape Town. Attaining this Certificate allows students to become a generalist teacher 
in South African primary schools. This means that one of the compulsory courses, 
which all students have to take, is a year’s module on the Content and Method of 
Primary Mathematics. In a previous PME report (Breen 2000), I explored the 
occurrence of strong emotions of fear and anxiety towards mathematics experienced 
by these mature students. Later work (Breen 2001) has seen the development of a 
curriculum for the first semester of this course which attempts to address the 
mathematics anxiety found in the class and draws strongly from an enactivist 
approach to cognition (Davis 1996; Varela, Thompson and Rosch 1991). Carroll 
(1994) explores the occurrence of mathsphobia in a similar group of students training 
to become teachers. Her case study follows the earlier work of Buxton (1981) and 
Frankenstein (1989) in attempting to understand how mathematical achievement can 
became blocked by emotional and sociological factors.  
THIS STUDY 
As suggested by the quotation at the start of this report, there are students in the 
above PGCE class each year that, right from the start, exhibit signs of a powerfully 
negative relationship with mathematics. Since it would be unethical to simply ignore 
and then just fail such students without engaging with them, this research report will 
focus on one such mathsphobic student, Marissa, who was registered in the same year 
as the author of the original ‘serpent’ quote.  
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The Content and Method of Mathematics module is structured in such a way that I 
teach the first semester’s work by means of a double lecture (90 minutes) twice a 
week for 12 weeks. Data for this case study was obtained from the journal that the 
student kept for the class as well as from her end of year Research Essay and 
Teaching Practice journals. Further data was obtained from recorded interview 
material of our end-of-year revision sessions and my own teaching journal for the 
class.
The data will be presented in the form of a time line of extracts from what I consider 
to be significant moments or utterances as recorded during the interaction. Then 
intention of these extracts is not to present the ‘truth’ of the event (as both lecturer 
and researcher I believe this would in any case be an impossible task), but rather to 
present the reader with as rich a picture as possible of an account of Marissa’s 
engagement with the mathematics course and the lecturer.
THE DATA 
First Term 
Marissa arrives: First session (27 Feb). 
In this first session of the year, each student is asked to come up to the board to write 
down their hopes and fears for the year. Shortly afterwards, Mr. Smith arrives in an 
academic gown and gives them a test. He supervises this test in an unpleasant way by 
shouting at those who make mistakes and putting pressure on the students in various 
familiar ways. 

I notice a small woman sitting near the front of the class chewing away 
frantically and blowing gum. She could be trying to draw attention to 
herself. Is she going to be one of those cocky students who think that they 
are wasting their time in this class because they can already do the maths? 
She doesn’t say anything but I sense that this is not the case. At the end of 
the session I test the latter view out by saying to her that it seemed to me 
that she was chewing her gum furiously to try to ease her tension. She 
agrees with me.        (Chris: Feb 27) 

When I first realised Maths was inclusive in this course I immediately felt 
physically ill.  I can honestly say I dreaded the first lesson.  Maths since 
school for me has always been a stumbling block.  I always felt inferior to 
those who were able to do it.  I (and it is my own insecurity) always felt that 
people thought less of me that I did not do Maths.  (Marissa: Feb 27) 

Second Session: Matchsticks (2 March). 
In this session the students use matchsticks as a physical bodily activity to make the 
patterns from which they will generate formulae through visualization. My focus as 
teacher is to encourage all answers as being different ways of ‘seeing’ the pattern, 
and to discourage shouting out and competition as a way of encouraging diversity. 

Fear and anxiety engulfed my entire body.  The prospect of actually doing 
anything mathematical was beyond my realm of consideration.  Even before 
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we began I said to myself I probably won’t be able to do it so why bother?  
These words are remnants of ‘my life with Maths’ at school – my motto was 
I can’t do it so don’t even try! The matchstick exercise forced me to engage 
with Maths.  The first answer I knew I would get wrong and did!  So I 
thought here we go again – the idiot of the class.  But when I did eventually 
work out one of the patterns I began to physically relax my tense body and 
mentally relax my mind.  Chris, you seriously make me feel at ease, I am not 
saying this to ‘score points’ but I feel almost “safe” with you in the class.  It 
is though you act as a ‘buffer zone’ between me and the rest of the class – 
who I feel are too confident in their ability in Maths.   (Marissa: 2 March).

Fifth Session: Painted Cubes (9 March) 
The students have been working on getting formula for generalizing patterns for 6 
hours by now, so I push the pace in this session. They are put into groups and given 
apparatus and asked to solve a multi-leveled problem. 

Marissa comes to me and says that she can’t cope with this problem and 
starts crying. She says she is going to vomit. I say that she can go outside 
to the toilets and vomit or she can use the bin and stay inside but she is not 
allowed to use the vomiting as an excuse to stop doing the maths. My 
recollection is that she left the room and then came back in. I suggested 
that she might like to work on her own and she could then ask me 
questions.        (Chris: 9 March) 

Well the ‘after shock’ of Fridays lesson did not go away that easily.  I hated 
myself for allowing myself to be so vulnerable and immature firstly in front 
of the class and because I could not do the work! From the moment you put 
the blocks in front of me I could immediately feel the anxiety building up.  As 
I told you I really did feel physically sick to the point where I felt as if I 
could not breathe.  You knew I wanted to give up and bolt from the class, I 
wished I could!  To make matters worse I felt the pressure of everyone 
around me, their confidence to tackle the problem made me feel unworthy 
and stupid. Although I still felt uneasy when I went to sit by myself I really 
did try to calm down but as soon as I got stuck, panic seized up 
again…Chris, I seriously want to thank you from the bottom of my heart for 
your help and encouragement on Friday!  It really helped me to know that 
you were on my side.     (Marissa: 9 March)

April Teaching Practice (TP1). 
At the start of the second term, students are placed in schools for a five-week period 
to teach and have their teaching assessed. 

Today I had the opportunity to participate in a double Maths lesson, which I 
ran by myself with a little assistance from the teacher whom I had asked to 
be present.  At this point I have to explain what an “achievement” this was 
for me even to enter a Maths class let along as a teacher! It was ironic 



www.manaraa.com

2–170  PME28 – 2004

because the class was busy with equivalent fractions and before T.P.1, we 
were busy with equivalent fractions in our Maths method class.  Therefore I 
used the same idea that was used for our lesson. The idea proved to be 
successful and I think the learners really enjoyed working from practical 
experience.  I would see and relate to how their faces lit up when they got 
the answer right.      (Marissa: April TP Journal)  

The Mock Test. 25th May 
At the start of the term I give the class a content test, which covers the topics of basic 
operations, fractions, ratio and proportion and percentages, which will be covered in 
the second term. My aim is to check the level of the class, but also as a way of 
identifying concepts that need to be addressed in the sessions. 

Marissa left the room early in tears and stayed in the ladies toilet for a long 
time. I asked one of my female colleagues (J) to go in and talk to her. 
Marissa ended up spending a lot of time in J’s room. J later told me that M’s 
maths thing is serving as a “handle” to hold a lot of fears about the whole 
year in place.                 (Chris: 25 May) 

Marissa gets the fewest sums correct in the whole class. She omits all questions 
containing division and fractions.  She failed to attempt an answer to the questions: 
4,9 ÷ 0,007 and 63000 ÷ 210.
Content sessions during the rest of the second term. 

Every Maths lesson comes with its new challenges for me, with regard to 
today’s lesson I was obviously quite tense, knowing the outcome of my 
disastrous mock test and that I basically had to ‘relearn’ many concepts.  I 
felt overwhelmed at this challenge.    (Marissa: 30 May) 

I still felt a bit ‘edgy’ with grasping the concepts due to the fact that 
basically this was ‘new’ to me.  I felt that everyone else in the class ‘clicked’ 
on instantly while sometimes I didn’t.    (Marissa: 1 June) 

Today I must admit was on the one hand relief, to be finished with all the 
content, but on the other hand, knowing that I still have to write the test…I 
really will try my best Chris.      (Marissa: 13 June)

The first test proper. 20th June. 
Marissa completed the basic arithmetic content test without having to leave the room 
early and gets a total of 25 marks out of 75. She was able to answer the question 
19440 ÷ 72 correctly, but attempted to answer the question 0,95885 ÷ 0,0245 by 
placing the two numbers in columns and then going no further. 
Revision Sessions (25 Oct – 13 Nov): 
In the lead up to the final test at the end of the year, Marissa asked if I would help her 
with her revision. I agreed on condition that I could tape these sessions and also that I 
could interview her about some aspects of the year as well as her past experiences 
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with mathematics. The following extracts are taken from the last session before the 
final test where we are going over a problem she is tackling on division: 
Extract One: 
C: 6 divided by 3 goes like that, which number is first 
M: this one – the 6 
C: where does it go? 
M: inside, that’s what I thought 
C: write it out in full, okay and outside – okay, so there we can do it, that’s how it goes, 

because you go 6 divided 3, you can write that one down, that’s the first step, not 
that, you couldn’t do it here 

Extract Two: 
M: I know but I’m saying: Do I do this into this whole number or into that first? 
C: Ja, just long division 
M: 165 into 429 – it won’t even go! 
C: Would you just do it please? You get sulky and grumpy, that’s what you do, and then 

you suddenly lose it. Just hang on, just hang on. Here this is a whole lot of rubbish 
because you didn’t go for that as I told you. 

The final test: 14th November 
Marissa comes to my room to write the compulsory test. She is the only student in the 
class who has not obtained the sub minimum requirement for this topic. She correctly 
answers the first division problem of 42,90 ÷ 16,5 and manages the decimal comma 
for the first time in a test. For the second problem, 0,6 ÷ 0,0012 she gets the divisor 
the correct way around and has written 6 ÷ 2 in the margin (see above extract from 
interview). However, she reaches an incorrect answer of 0,05.  

I would’ve given up, I really would have, I would’ve left it blank, if you 
weren’t here, I would’ve gone, stuff this, big deal, can’t do it, move on, and 
left it out probably. I am actually pleased that I’ve done it, I really am 
because I mean I can do it, you’ve just shown me that I can do it, but it has 
been tough mentally.              (Marissa: post-test interview) 

INTERPRETING THE ACCOUNT 
Lather (1991, 91) identifies an epistemological shift in research methodology away 
from an emphasis on general theorizing to problems of interpretation and description. 
She argues that description/interpretation inevitably involves bringing to the fore 
one’s own perspectivity, which presents a challenge to conventional views of 
objectivity. It has already been accepted that, since only a portion of the data has been 
selected for presentation here, this must already represent a subjective choice. But 
what of the analysis of the account which has been presented? 
Marissa’s script as to what happened.
I felt that I was incapable of learning any Maths concepts and my expectation of 
failure induced the behaviour that increased the likelihood of that outcome.  I believe 
my failure in Maths was as a direct result of my negative self-expectancy (Research 
Essay). I think it all started in Form 4 when I couldn’t understand a thing about 



www.manaraa.com

2–172  PME28 – 2004

division (13 November interview). Indirectly my negative attitude towards Maths can 
be attributed to the fact that both my parents also believed that they weren’t good at 
Maths and would often comment that “our family is just not good at Maths (Research 
Essay). This self-fulfilling prophecy was the legacy I brought with me into my Maths 
method course this year (Research Essay) 
It helped such a lot this year to have a teacher who believed in me and that I could do 
the mathematics. I liked the way he asked us to visualize things with apparatus. 
Talking it through with him always helps as he has a calming effect on me (13 
November interview). You can see that it worked because my marks improved so 
much during the year. I almost completely conquered my difficulties with division. 
Chris asked us to keep a journal to record what we felt like after each lesson, I found 
this to be therapeutic in that it was the first time in my life that I was able to express 
my total anxiety with regards to Maths and to know that someone cared whether I 
passed or failed (Research Essay October 2001). The experience on teaching practice 
was the most significant event. I do not think anyone can realise what a personal 
triumph this was for me.  I cannot believe that I did not panic or end up crying in the 
lesson. Although my anxiety towards Maths still exists I REALISED THAT I CAN 
DO IT!  I felt as though years of suppressed anxiety had literally been lifted off my 
shoulders (Research Essay). 
Chris’s script: Version 1
It seems that I’m really getting somewhere with this course on two levels. In the first 
instance, the focus on enactive principles has allowed Marissa to voice her feelings in 
a reasonably ‘safe’ environment. She has been forced to stand back a bit from the 
events of the day in the class by the set task of keeping a reflective journal which 
forms part of the assessment portfolio. This work is really important and it showed 
when she plucked up the courage to teach maths on TP and it worked for her! It also 
proved to be important to be strict with her at times as shown, for example, in the 
incident where she wanted to revert to her school strategy of leaving the room for the 
rest of the class with a headache. Even in the final revision session, being firm with 
her allowed her to bring the taught example of using 6 ÷ 3 as a reference point for 
understanding how to order the numbers in a division sum. The gradual improvement 
in her ability to tackle division problems during the year was also encouraging, 
especially as this was the very same topic that had started off her whole path of 
negativity towards mathematics. Marissa also showed me the important lesson of 
always believing in a student no matter how much they might challenge you.  
WAIT A MINUTE… 
The above interpretations mirror claims from a research report on an intervention 
programme with a similar aim in which there were resulting ‘genuine and sincere 
affective changes’ (Grootenboer 2003, 419). However research such as that by Evans 
(2000) and Blanchard-Laville (1992) provide an opening for an alternative and less 
comfortable interpretation of events, which might read as follows. 
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Chris’s script: Version 2. 
Over the years I have developed a strategy to get students who struggle with maths to 
talk to me. It’s based on the good cop, bad cop routine. In the very first session I 
introduce them to a nightmare teacher called Mr. Smith who draws out memories of 
bad times in their school maths classrooms. At the end of the role-play I remove the 
symbol for my transformation to Mr. Smith (an academic gown), and return to the 
class as the good guy, Chris. The acceptance of feelings and the use of apparatus and 
visualization as ways of getting into the mathematics, helps distance both my class 
and me from Mr. Smith and his world. It also promises the students the possibility of 
a different mathematics experience.  
Marissa’s mathsphobia basically stems from a mathematics script written many years 
ago. In fact, it is probable that most of it was written in her very early years before 
she encountered school mathematics. This powerful condensation of mathematics is 
considered by many to be a common heritage for all students (Tahta 2002). 
In this particular class, I am both a teacher and a teacher educator, but not a 
psychologist so I cannot engage with this early script. My task then is to play along 
with the idea that this fear has everything to do with mathematics. I tackle this 
problem with mathematics as a short term problem needing patching up as quickly as 
possible. However, I also aim to leave open the possibility for Marissa to choose to 
work on whatever else comes up - in her own way. In Marissa’s case my strategy of 
positioning myself as a good guy works and she comes to view me as someone who 
at last has belief in her. I listen to and read about our interactions in class and in her 
journal writings. I try to pick up her cues as to when to be firm and when to give her 
space. Even on the day before the final test she still does not understand division, so I 
am forced to take her on one of those meaningless step-by-step routines where she 
ends up with correct answer because I have been firm and she has been anxious to 
please. Fortunately, this lesson stayed with her (almost) for 24 hours as is shown by 
the improvement in her performance in division problems. However I choose not to 
dwell on the fact that she is unlikely to still be able to do the problem next week.  
Cabral and Baldino (2002) discuss the concept of pedagogical transfer where positive 
transfer is identified with love. However, they warn that this ‘love is to be distrusted, 
since the student is only seeking the way to produce the right answer, so that …(s)he 
will be recognized as one who knows’. Marissa ends the examination session by 
checking whether I will be in my office the next day, as she wants to bring me a gift 
of appreciation. I’m relieved at the end of the year that it has all worked out, even 
though at times it became increasingly difficult to be supportive. She has had a good 
teaching practice experience and she has improved from a mark of around 10% to 
one of about 60%, and has passed the year. However, a year later, she has still not 
arrived with the present! Is this proof that the love is to be distrusted? 
CONCLUSION
The mathematics anxiety that student teachers bring to their training as primary 
mathematics teachers is a serious and complex issue with many levels. This report 
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has attempted to provide a window for the reader to enter into the lived experience of 
one such student as she engages with a mathematics class which has been specially 
designed for students with similar difficulties. The provision of an alternative 
interpretation of the account has attempted to begin to unwrap one additional possible 
layer of the complexity. Readers are invited to attempt to continue this process by 
providing their own interpretation of Marissa’s story. 
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Political measures are being taken to “democratize” access to universities in Brazil. 
A new State university recently created after a wide consultation to the population, 
has taken two important measures: (i) it reserves fifty per cent of its places to poor 
students and ten per cent to physically handicapped  ones and (ii) has abolished the 
departmental structure. The paper discusses the result of a strategy adopted to deal 
with the highly heterogeneous classes resulting from the first measure and presents a 
way of taking advantage of the absence of epistemological control by a mathematics 
department to offer interdisciplinary objects as possible students’ objects of desire.

INTRODUCTION
“I, Diogo Isidoro Gurgel Mascarenhas, declare that, among other possessions, am the 
legitimate master and owner of a slave of the name of Ana received form the heritage 
of my father, Lucio Gurgel Mascarenhas and since the said slave is my mother, and 
since today I come to age, as certified by the marriage of yesterday, therefore, finding 
myself in the right, I concede to the said my mother full freedom that I concede with 
all my heart” [Coimbra, 2003].      
It seems that only recently Brazilian society has realized the severe exclusion 
processes, racial as well as economical, that are still going on since much before 
1869, date of the above public statement. A feeling for inclusion is now sweeping the 
country and measures are being taken, such as the “zero-hunger” Presidential 
program and the “democratization” of access to universities. However, if inclusion 
becomes necessary it is because diversity has already made ravage. A new public 
university1, recently created after a wide consultation to the population, has taken two 
important measures towards inclusion: (i) it reserves fifty per cent of its places to 
poor students and ten per cent to physically handicapped ones; (ii) it has abolished 
the departmental structure. The first measure is directed against entrance 
discrimination and is justified by the argument that poor students deserve a 
compensation for being confined to public schools, held as offering a lower quality 
teaching than the expensive private ones. The second measure is directed against the 
exclusion process inside the university under the argument that the hard-sciences 
departments crate themselves into narrow epistemological conceptions, develop a 
                                          
1 UERGS, State University of  Rio Grande do Sul, the southernmost State of Brazil, was created in 
2002 as a multi-campi university devoted to boost culture and production throughout the State. 
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sneering attitude towards other areas and are responsible for the failure of many 
students driven out of the university.
The paper reports on a research project to deal with the conditions that these 
measures impose on the mathematics classrooms of an ambitious Engineering 
Program on Digital Systems in the periphery of a three-million inhabitants urban 
agglomeration in south Brazil. Students of the traditional federal down town 
university prejudicially refer to us as “a university for deficients”. We engaged in this 
Program in August 2002 and were entrusted with the teaching of six one-semester 
courses on calculus, analytical geometry and differential equations. We immediately 
established a research project in Mathematics Education that includes our teaching 
activities and is guided by the question: how can  mathematics teaching best supply 
the demand of this particular engineering program? The degree of generality of our 
findings hinge on three points that may be common to other universities and 
programs. 1) The reservation of places obliged us to deal with highly heterogeneous 
classrooms in an effort to revert social exclusion through mathematics [Gates, 
Lerman, Zevenbergern, 2003] and having “social justice as a desirable outcome” 
[Mesa & Sounders, 2003]. 2) The absence of a mathematics department set us free 
from the control of the mathematical science and obliged us to seek the legitimacy 
[Chevallard, 1989:63] of our objects of teaching in the consensus of colleagues of 
subsequent professional courses, specially the physic teacher, seeking to “integrate 
the teaching of mathematics and sciences” [Keller and Marrongelle, 2003]. 3) Since 
the University is new, there is no tradition that we can count upon nor that can hinder 
us. On the contrary, the contribution of the institution to the formation of systems of 
beliefs [Gates, 2001] leading to the formation os students identity [Brown, 2003] as 
future engineers is to be established by us, in so far as we develop our activities.  
METHODOLOGICAL AND THEORETICAL CONSIDERATIONS 
The need to impress change on reality and to build tradition, led us naturally to adopt 
the methodology of action-research. The colleagues to whom we communicated our 
research intentions agreed that these were relevant for the Institution and agreed in 
constituting the research forum of such a collective problem.  
The main proponents of action research [Elliot, 1991, Zeichner, 1998] seem not to 
have been able to avoid action research to be considered as a second-class research 
method [Cohen and Manion, 1994:189-193]. They do not clearly dismiss the idea that 
the necessary reflection accompanying any teaching action aiming at enhancing 
learning, might be taken as genuine action-research. Therefore “some teachers see their 
practice of planning, teaching and reflecting on teaching as a research process” [Jaworski, 
2003]. Although we too carry out such reflections, they are only part of our research 
problem, which is adjusting mathematics teaching and creating tradition to a new 
Engineering Program. Accordingly we adopt a wider conception of action-research:

“Action research is a kind of empirically based social research that is conceived and 
carried out in close association with an action or solution of a collective problem in 
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which the researchers and the participants implied in the situation or problem are 
involved in a participative or cooperative way” [Thiollent, 1998:14]. 

Furthermore, we contend that there is no research that does not impress some change 
on reality and therefore is action research, lato sensu. However, due to a narrow 
concept of ‘action’ many researchers ignore or avoid to consider the social effects as 
part of their research’s action. Once attributes have been assigned to different 
institutionally defined social agents as ‘the teachers’ and ‘the researchers’, the 
unavoidable consequence is a problematic relation between theory and practice and 
an increasing hierarchy between  academy and school. The results are the many not 
very fruitful efforts “to bridge the traditional gap between theory and practice” [English, 
2003], “to bridge the school/university divide” [Jaworski 2003], to solve the “dilemma”
through  “collaborative research” [Carrillo, 2003].  
Once research extends its focus to include its own actions in reality, human subjects 
including the researchers, are implied and the field of affect is open, together with 
cognition. J. Falcão suggests that the dichotomy affect/cognition can be avoided if we 
choose “a more productive unit of analysis (that) targets cultural situations in the context of 
which a mathematical activity takes place involving a set of identifiable epistemic contents 
(a conceptual field)” [Falcão et al, 2003:274, Falcão, 2003]. However, if we accept to 
“look at social forces not only as acting on us but also as acting in us” [Gates 2001:18] we 
are led to recognize our own state of dependence as affective human subjects and the 
hope for an external point of view from which a synthesis of affect and cognition 
would be possible, vanishes. Thereafter a theory that places at its very center the 
dialectics of the Subject and the Other, a mismatch as constitutive of the Subject, 
becomes necessary and we are led to the philosophy of Hegel-Lacan as a theoretical 
framework.
According to Lacan, the theorizer has to accept that no theory will never cover up 
reality and the research-teacher will have to fully assume his/her part in the interplay 
of desires in the institution, including the classroom. However, since Adam left Eden, 
desire is not substantive, it lies only in its effects and presents itself through objects of 
desire, none of which is perfectly satisfactory, so that actions do not generally match 
declared intentions and the game has to restart. To make the mathematical object into 
his/her students’ object of desire is the dream of all mathematics teachers. We are a 
little more ambitious, we seek to constitute institutional professional objects with 
mathematics built-in, as students’ object of desire. To realize our dream we count on 
our ability to work out the pedagogical transference [Cabral and Baldino 2002] 
starting from our declared intentions as research-teachers. Our intentions hinge on 
three conceptual heads: epistemology, didactics and pedagogy.
EPISTEMOLOGY
By epistemology we mean the institutional legitimacy of the objects of knowledge 
brought into the classroom. In accordance with our colleagues we decided to make 
wide use of infinitesimals, not as a metaphor or an ad hoc strategy to find integral 
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formulas, but as a true object of teaching. In the exams the students are required to 
calculate differentials of polynomials and rational functions by the method of 
infinitesimals and to write down the infinitesimal elements of area, volume, pressure, 
moment of inertia, electric field and so on, before they put an integral sing in front of 
them and choose the limits of integration. The number line (the continuum) is 
referred to as being “thick”, that is, as holding infinitesimals, monads and infinite 
numbers, besides real numbers, just as we contend that Cauchy thought of it [Sad, 
Teixeira, Baldino 2001].  
The epistemological difference between infinitesimals and limits about, for instance, 
the concept of area is striking. According to the Weierstrassian theory of the 
“meager” real continuum the area is defined exactly as a certain real number obtained 
from Riemann sums. The student is asked either to reformulate his previous concept 
of area so as to adjust the definition or, at least, never to refer to it as ‘area’, because, 
thereafter, this word will have a new ‘precise’ meaning. Mathematics becomes a 
formal science. On the other hand, if we adopt the “thick” hyper-real or Cauchy’s 
continuum, it is the concept of area that develops itself, both historically, from the 
Egyptian scribes to the present, as well as logically, from the simplest Brazilian 
peasant to calculus textbooks. At a certain point of its development, the concept of 
area expresses exactly the area under a curve as an infinite sum of infinitesimal 
elements �

b
a

dxxf )(  and this area is calculated approximately (up to an infinitesimal)

as F(b) � F(a). Mathematics remains a conceptual science. We clearly aim at 
establishing the infinitesimal way of thinking as a tradition of the Program. 
DIDACTICS 
By didactics we mean the ordered set of mathematical objects introduced into the 
classroom as a focus for transference. It was decided to introduce objects from other 
courses into the mathematics classroom whenever possible. For instance, we 
introduced the RLC series circuit as a genuine object for our differential equations 
course, hoping to make it into an institutional professional object, since it is also 
studied in physics and forms the basis for electrical circuit courses. In the action-
research forum it was decided that  we should not work the associate second order 
differential equation in terms of the electric charge in the capacitor, as most 
mathematics books do, but adopt the integro-differential form, in terms of current, as 
needed in electricity. We reviewed our undergraduate physics courses so as to be able 
to call for students’ understanding of physical phenomena and to use the proper units 
and meaning of constants. The following episode is illustrative of such an attempt.   
We had set the comparison of the integral and the differential forms of Maxwell’s 
equations as the main objective of our third-semester two-months course on vector 
calculus. We started the subsequent two-months course on differential equations with 
the harmonic oscillator as a model for the mass-spring system and the RLC circuit. 
So it became natural to ask the students to explain the performance of the inductance 
from the Maxwell’s equations. In searching the answer to our question we stumbled 
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into a paradox that kept us puzzled for a couple of weeks. We introduced the paradox 
to the students, told them that we did not know the answer, suggested that they asked 
other teachers in ours and in the federal university that they might contact and, 
promised them a bonus for intelligent suggestions. We received many interesting 
contributions from experienced colleagues, both in mathematics and in physics, 
before we could find out our mistake that had also passed unnoticed to them. We 
contend that the paradox has arisen because of our insistence in integrating physics 
and mathematics in the same object. Indeed in most physics manuals, Maxwell’s 
equations are presented at the end of the course, after the Laws of Faraday for 
induction have been discussed, so that explaining inductance from those equations is 
out of question. The exception is Feynman [1972]. This paradox worked as a genuine 
institutional object for two weeks. It could only arise because the dichotomy of 
different departments was surpassed by the university inclusion policy. Here is the 
paradox; due of lack of space we leave its solution to the reader. 
Consider a circuit with a coil and an emf e (figure). 
For the qualitative analysis made here, a one-turn 
coil is as good as an n-turn one. Turning the switch 
on, an increasing electrical current starts circulating 
in the indicated sense. Hence the potential in A is 
greater than the potential in B.
The fourth Maxwell equation applied to the curve C
(upper part of the figure) implies that the circulation 
of the magnetic field around C is proportional to the 
current i across the surface bounded by C (the parcel 
due to the variation of the electric field across this 
surface being null). Since the current is increasing, 
the magnetic flux across the surface abcd bounded
by the coil is also increasing. Considering the curve 
abcd that follows the turn of the coil clockwise, the third Maxwell equation implies 
that the circulation of the electric field along this curve is minus the rate of change of 
the magnetic flux across the surface abcd, being therefore negative. Hence the 
electric field along this curve must be pointing in the opposite direction with respect 
to which the circulation is calculated, that is, in the sense dcba. But the electric field 
always points from the higher to the lower potential, hence the potential in B (the 
same as in d)  is greater than the potential in A (the same as in a).
PEDAGOGY
By pedagogy we mean the set of rules, the work contract that regulates the relation 
student/object; these rules lead to the constitution of institutional professional objects. 
The first negotiation of the work contract was very difficult. There was no ‘last 
semester’ to which we could refer in order to introduce our classroom rules that 
included mandatory daily-assessed group-work with teachers’ expositions at the end. 
A considerable group of students (group A) voted for traditional lectures. Within two 
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weeks most of them stayed in the garden, playing cards during the expositions that 
they had asked for. Recently one of their leaders confessed that she always passed 
with good grades in elementary and high school but never had to open a book at 
home. Now  when she finally convinced herself that there was no other way to get a 
passing grade she was facing difficulty in getting concentrated. Some of these  
students are of the kind that we would call ‘bright’. They always have a ready answer 
to any question, no matter how complex it might be. Most of their answers do not 
make sense or make only an allusive sense. Typical of their discourse is the following 
pearl: ‘the gradient is the slope of the only tangent line to the tangent plane’.
Other students of group A do not display the same brightness; nevertheless they try to 
behave as if they did and they join the others in the game of cards. Strange behavior 
of people who travel seventy kilometers everyday back and forth to come to the 
university and say that they want to master high technology, we thought. Where is 
their desire? We soon found out. 
Indeed, in the first few days of course we came upon a group of students (let us call it 
group B) who did not recognize the function x2 and could neither produce its table 
nor draw its graph from the table. Here is a true mathematics educational problem, 
we thought, and we set ourselves to solve it. This group represented one third to one 
fourth of  the students of each of our two forty-students classes. We thought that if 
we succeed in making this group to show a reasonable progress, all the rest would 
follow. We committed ourselves to “leave no student behind”, we arranged our class 
schedule so that both could be always present in the classroom and organized extra 
classes for these students. We put one student at a time at the black-board and asked 
for contributions from the others as described in [Cabral and Baldino, 2002]. We 
soon found out that their difficulties were bigger than we thought. These students 
could not use the rule of three, when asked how much is twelve times 147 divided by 
147 they required a calculator, they could not evaluate the simplest arithmetic 
expressions nor solve the simplest algebraic equations and for them, the largest side 
of any triangle was always the ‘hypotenuse’. One of them could not solve this 
problem: four chickens weigh five kilos; how much weigh two chickens? After half 
an hour, under our insistent stimulus, her answer was 2,500 grams. Proficiency in our 
mother language was of no help either: at least two of them, after several attempts, 
could not repeat the statement of Pythagorean theorem without reading it, much less 
make any sense of it. During regular classes we dedicated special attention to these 
students. Sometimes one of us stayed among them while the other took care of the 
rest of the class. Nevertheless, they could not get started in the exercises of the day 
[Stewart, 2001 bended by work-sheets] because they could not make sense of what 
they read. In fact, each student in group B would require a full time tutor during the 
whole class. They asked their colleagues for tutoring but soon found out that these 
were not patient enough to deal with their difficulties.  
A few of these students showed some progress during certain classes but in the next 
day it was as if they had never lived through the previous one. The most dedicated 
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ones had an astonishing ability to produce the answers that we expected, thereby 
producing an illusion of understanding. We carefully avoided such a trap and led the 
transference relation strictly toward the mathematical objects. In spite of all efforts 
group B failed all the exams and along the three subsequent semesters gradually quit 
the Program.  
In spite of our efforts, at the closing of the third semester (Dec. 2003) the 80 students 
admitted in August 2002 exhibit the following situation in mathematics courses: 5 out 
of 32 (15%) who were admitted into reserved places are getting passing grades and 
27 either quit the course or are failing repeatedly; out of a total of 23 who are 
showing some success, 27 (78%) were admitted into regular places. The situation of 
the 40 students admitted in March 2003 point to the same tendency. All the thirteen 
students composing group B were in reserved places.  
The behavior of group A now becomes comprehensible. This university was created 
around a strong feeling for inclusion and it was estimated by the research forum that  
rejection of a large number of freshmen would certainly raise disapproval of the 
upper administration. We are all hired on a two-year temporary basis. Group A 
certainly realized our constraints and estimated that, as long as the not negligible 
group B was present and had any chance of passing, as we expected, they would 
certainly pass too, without further effort than coming to the university just to pick up 
some indications during classes. The cards game was natural, in spite of their 
declared intentions of becoming professionals capable of mastering high technology. 
Only at the closing of the third semester some signs of change are being noticed. Out 
of the 80 students entering in March 2002, 20 concluded the third semester 
mathematics course and 16 passed. A Hard-working group of able students was 
finally formed but through a high social price.
As students of group B abandoned the Program, they expressed strong feelings of 
revolt and blamed “our method” for their failure. ‘We expected new teaching 
strategies but what we saw was exercises from a book’, they said. They never 
declared it explicitly but we suspect that they would hope for the widespread 
“method” used in high schools: one solved sample exercise followed by several equal 
ones and one of them chosen for the exam. We understand their distress: like the 
personage Jim in Spielberg’s Empire of the Sun we had believed that we had the 
power to restore their mathematical ability and we had unwillingly transmitted them 
our belief.
A FINAL WORD 
Compensatory policies have certainly become necessary in face of the severe social 
processes of segregation in all areas, not only in Brazil. However, the indiscriminate 
reservation of places in universities without further consideration about the problems 
that this decision raises, reduces the whole policy to mere demagogy with perverse 
social effects.
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PRIMARY STUDENTS’ UNDERSTANDING OF TESSELLATION: 
AN INITIAL EXPLORATION 

Rosemary Callingham
University of New England 

Tessellation is included in many mathematics curricula as one way of developing 
spatial ideas. If students do not understand tessellation in the intended ways, 
however, the development of other spatial ideas, such as properties of shapes and 
symmetry, may be compromised. Van Hiele levels were used as a basis for analysing 
the descriptions of eight different tessellation patterns by 26 Year 5 and 6 students. 
Most children saw the underlying structure in terms of 2D shape. Responses from 
some students indicated that they understood the tessellations only as movements of 
shapes or saw many of the patterns in 3D. The implications of these findings for 
teaching are discussed. 
INTRODUCTION
Although tessellation has mathematical applications in fields as diverse as biology, 
architecture and physics, in the school mathematics curriculum the topic tends to be 
included as a means of developing students’ understanding of geometrical ideas, 
rather than as a worthwhile mathematical idea in its own right (e.g. Australian 
Education Council (AEC), 1990; National Council of Teachers of Mathematics 
(NCTM), 2000). In the Australian mathematics profiles (AEC & Curriculum 
Corporation, 1994) tessellations are explicitly mentioned as indicators of space 
outcomes in the middle years of schooling, although the progression from one level 
of understanding to the next is not clearly defined. There appears little attempt in 
curriculum documents to describe a coherent developmental sequence of 
understanding of tessellation. If tessellation is a topic included in order to develop 
students’ understanding of shape it would seem desirable to be able to describe 
children’s appreciation of tessellation itself, since misconceptions of this topic could 
affect the development of other spatial ideas. 
Owens and Outhred (1997) described young children’s difficulty with visualising 
tiling patterns, particularly when the shape to be tiled was unfamiliar. The focus of 
this study was the concept of area, and a large proportion of the children in this study 
were unable to quantify the number of tiles needed to cover a particular shape. 
Vincent (2003) suggested that exploring tessellations was one approach to 
investigating the properties of 2D shapes. Serra (1993) included tessellation 
explorations as one way of developing ideas about symmetry. The notion of using 
tessellation activities as a means of developing understanding of other aspects of 
geometry may be compromised if students do not understand the nature of 
tessellation, or have different perceptions from those assumed by teachers. 
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One approach to considering students’ understanding of geometric concepts is that 
provided by the Van Hiele levels (Burger & Shaughnessy, 1986). The five levels, 
visualisation, analysis, abstraction, deduction and rigour, are hierarchical in nature, 
and describe increasingly complex reasoning about geometry. The key aspects of 
each level are: 

Level 0 (Visualisation): Students take account only of the appearance of the shape, 
and describe properties only in terms of its appearance.   
Level 1 (Analysis): Students describe properties informally, and can establish the 
essential conditions through a consideration of component parts. 
Level 2 (Abstraction): Students can draw on logic to establish necessary and 
sufficient conditions when describing the properties of shapes. 
Level 3 (Deduction): Using formal reasoning systems, students can establish 
theorems and rely on proof as the ultimate authority. 
Level 4 (Rigour): Students can move outside a single system and compare and 
contrast geometries that are based on different premises. 

The van Hiele levels have been primarily applied to understanding of the properties 
of 2D figures. Where tessellations were concerned, the understanding demonstrated 
needed to take account not only of the shapes involved in the tessellation, but also of 
the transformations applied in order to create the tessellations. At Level 0, students 
could be expected to identify the shapes involved in the tessellation or the 
combination of shapes that made up the basic unit that was transformed to create the 
tiling pattern. Students responding at Level 1 would be expected to describe both the 
shapes involved and the movements used to transform the shapes but in a 
disconnected fashion. Those responding at Level 2 could be expected to integrate 
their descriptions, using some level of technical language such as “flip” or “slide” 
which is commonly used in primary classrooms. In a very good Level 2 response, 
there might also be some attempt to quantify the extent of the transformation. Since 
the students involved in this study were in Years 5 and 6, at the end of primary 
school, it was not expected that the higher levels of deduction and rigour would be 
observed.
RESEARCH QUESTIONS 
The research questions for the study were: 

1. How do primary school students describe tessellation patterns? 
2. Are the van Hiele levels useful in describing students’ understanding of 

tessellation?
METHOD
Teachers who participated in a professional development program, Success in 
Numeracy Education (SINE) that targeted the middle years of schooling (Years 5 to 
8), as part of the program were provided with a set of assessment tasks (Callingham, 
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Clarke, Falle, Inglis, Lawrie & Pegg, 2003) that addressed different aspects of the 
Space strand of the mathematics curriculum. All teachers agreed to trial at least one 
task with their classes, including the tessellation task of interest in this study.  
The tessellation task was designed to be used by a whole class, but not necessarily 
under standardised conditions. The task was exploratory in nature, with the aim of 
providing formative information to teachers so that they could more effectively plan 
their teaching programs.  
Eight different tessellations were presented in pictorial form, and students were asked 
to identify the shapes used and then to describe in as much detail as possible how the 
shapes were transformed to create the tessellation. The tessellations used are shown 
in reduced form in Figure 1. In all instances the responses presented were written, 
although teachers were allowed to scribe for their students where appropriate. The 
tessellations included regular and semi-regular patterns, one non-periodic tessellation, 
and patterns that included pentagons. It was anticipated that many of these patterns 
would be unfamiliar to students, although they were expected to recognise the 
underlying shapes that made up the unit of tessellation.
Using van Hiele levels as a basis, a set of descriptors was developed to provide a 
basis for the analysis. These are shown in Table 1. No descriptors were provided for 
the higher van Hiele levels, although it would be possible to describe these, including 
aspects such as quantification of the transformation.  

Table 1. Van Hiele levels applied to tessellations. 
Van Hiele level Descriptor Code
Level 0 
(Visualisation)

Recognises and names the shapes. 1 

Level 1 (Analysis) Recognises the shapes and describes the transformation 
informally. 

2

Level 2 
(Abstraction)

Describes both shapes and transformations 
unambiguously using technical language.  

3

Responses were obtained from 26 Year 5 and 6 students at two Catholic primary 
schools in Melbourne, Australia. This sample was opportunistic since it depended on 
the teachers involved in the project. Students coloured in the composite shapes used 
in each tessellation, and then wrote their descriptions of how the tessellations were 
made in spaces provided below each design. 
Students’ responses to each tessellation were coded as shown in Table 1. A code of 
zero (0) was reserved for an irrelevant or no response. 
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Examine each of the tessellations below. 
Identify the shapes used in each tessellation. 
Explain in as much detail as possible how these shapes have been transformed 
to make each tessellation. 
Tessellation 1 Tessellation 2 

Tessellation 3 Tessellation 4 

Tessellation 5 Tessellation 6 

Tessellation 7 Tessellation 8 

Figure 1. Tessellation task 
RESULTS
The responses of the 26 students to each tessellation are shown in Table 2 as counts 
and percentages.
The majority of students could describe the tessellations only in a visual manner. This 
was not unexpected given the age and experience of these primary-aged students. The 
levels of response shown in Table 2 suggest that as the nature of the shapes of which 
the tessellation was composed became less familiar the level of response was 
reduced. Tessellation 1, composed entirely of squares, attracted the highest overall 
levels of response with nearly half of the students responding beyond the 
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Visualisation level. In contrast, no students were able to describe Tessellations 6 and 
8 at the Abstraction level. These two tessellations were composed of shapes that 
might be informally described e.g. “fly wings” and “dumbbells”, and they also had 
some rotational transformation.  

Table 2. Responses of students to each question on the tessellation task. 
Tessellation Irrelevant Visualisation Analysis Abstraction 
1 4 (15.4%) 10 (38.5%) 5 (19.2%) 7 (26.9%) 
2 2 (7.7%) 14 (53.8%) 7 (26.9%) 3 (11.5%) 
3 3 (11.5%) 11 (42.3%) 11 (42.3%) 1 (3.8%) 
4 4 (15.4%) 17 (65.4%) 3 (11.5%) 2 (7.7%) 
5 6 (23.1%) 9 (34.6%) 9 (34.6%) 2 (7.7%) 
6 11 (42.3%) 8 (30.8%) 7 (26.9%) 0 
7 7 (26.9%) 13 (50.0%) 5 (19.2%) 1 (3.8%) 
8 13 (50.0%) 11 (42.3%) 2 (7.7%) 0 

The highest levels of response overall were elicited by Tessellation 1, with over one-
quarter of the students reaching Abstraction level. An example of the Abstraction 
level response is: 

The starting shape is a square, they are all the same size, and they have been slid across 
and then slid down.        (id 25) 

This response recognises the basic shape, places a condition on this (all the same 
size) and explicitly describes the movements used in two dimensions to create the 
tessellation, using the informal technical language (slid) used in the curriculum. 
Tessellation 3, an irregular tiling pattern produced some somewhat surprising results. 
The complexity of the pattern seemed to encourage students to apply some level of 
analysis, although this was not developed further into Abstraction level. A typical 
response coded at the Analysis level was: 

I think they started with a square with four triangles on the sides and the[y] overlapped 
them 12 times to get the shape …    (id 11) 

The idea of “overlapping” was frequently expressed, suggesting that the students 
were not seeing this as a tiling pattern so much as a design almost in three 
dimensions.
The three dimensional aspects of some of these patterns was notable. Tessellation 7 
was seen only as a set of cubes by 13 (50%) of the students. Only one student 
explicitly connected the two- and three-dimensional aspects of this tessellation: 

By using the dimond [sic] it looks like block afeact [effect]   (id 5] 
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This response was coded at the visualisation level. Some students, however, appeared 
to see three-dimensional shapes in many of the tessellations. One student saw 
Tessellation 1 as a cube: 

The starting shape is a cube on side view with another on top   (id 19) 
The way in which this student had coloured the tessellation suggested that this was 
more than the confusion between the words “square” and “cube”. The response, 
however, was coded as irrelevant since the student had not identified the shapes 
involved correctly. 
For some students, the movements used to create the tessellation, rather than the 
shapes involved, were dominant. This response to Tessellation 4 describes only the 
movement rather than the shapes involved, and this student described many of the 
tessellations in a similar fashion: 

They have been flipped over and slided. They have drawn triangles and covered all sides. 
         (id 3) 

This student has not named the shapes involved correctly, but has a relatively 
sophisticated view of how the tessellation has been created through flipping and 
sliding. The response however, despite its complexity, was coded as irrelevant since 
the shapes were not correctly identified. 
A more typical description of Tessellation 4 was: 

I see lots of octagons with diamonds between them      (id 4) 

Few students recognised Tessellations 5 and 6 as being composed of pentagons. 
Some students saw the composite hexagonal arrangement in Tessellation 5, but 
several students referred to the shape in Tessellation 6 as “fly wings”. It is likely that 
students have had little exposure to a wide range of two-dimensional shapes, other 
than the regular shapes found in commercial pattern block sets, and thus could not 
easily identify pentagons. 
DISCUSSION 
A majority of students in this study described tessellations in terms of the shapes of 
which they were composed: Visualisation level. This did appear to depend, however, 
on the nature of the shape. Familiar shapes, such as squares and triangles, were more 
likely to be named whereas only 50 percent of the students could describe 
Tessellation 8 coherently in terms of the shapes that comprised the design. Familiar 
shapes also appeared to support higher level descriptions. In terms of tessellation, 
however, the familiarity could also be something of a hindrance. Tessellation 4, for 
example, was described by nearly two-thirds of the respondents in terms of octagons 
and squares, with no suggestion of transformation.  
Few students were able to reach Abstraction level on any tessellation and this result is 
not surprising given their age and experience. Most of these students were, however, 
in a position to develop understanding of the properties of shapes with appropriate 
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teaching intervention since they were able to recognise and name the shapes in most 
instances, and this provides a starting point for further work on properties.  
The complex design of Tessellation 3 appeared to support students to reach Analysis 
level. Similar comments could be made about Tessellation 2 and Tessellation 6. In 
order to encourage understanding of tessellation, it would appear that students should 
experience a wide range of designs, made up of familiar and less familiar shapes and 
transformations.  
Of particular interest, however, were the unusual and unexpected responses. It was 
surprising that a number of students saw many of these designs in three dimensions. 
This finding suggests that even in the later years of primary school there are a 
number of students having difficulty understanding 2D representational conventions. 
The misconceptions shown by some students could compromise their understanding 
of the properties of 2D shapes, and subsequent development of geometrical ideas. 
Those students who saw only the movement of the shapes, rather than the shapes 
themselves, were in a position to develop understandings of symmetry beyond that of 
simple reflection symmetry. They could, however, have difficulty developing 
understanding of the properties of shapes. In contrast, those students who recognised 
shapes but made no mention of their transformation could have difficulty developing 
understanding of symmetry, particularly rotational symmetry which inherently 
demands some identification of movement.  
Using the van Hiele levels as a basis appeared to provide a useful means of 
identifying primary students’ understanding of tessellation, that included both 
recognition of the shapes involved and the transformations used to make the design. 
It did not, however, adequately identify the nature of the misconceptions shown by 
some students. This is one limitation of using van Hiele levels, since the types of 
misconceptions shown potentially could affect students’ development of geometrical 
understanding.
CONCLUSION
It appeared that the majority of students in this small exploratory study could 
recognise and describe a range of regular shapes when these were part of a tiling 
pattern. Their recognition of geometrical transformations, however, was more 
limited, particularly when the shapes involved were less familiar. There were also 
some unexpected and unusual responses, which might have an impact on students’ 
future understanding. This has implications for the use of tessellation as a means of 
developing geometrical insight. Teachers should not assume that all students 
visualise tiling patterns in the same way.
Although a majority of students responded in expected ways, some appeared to view 
tessellation only in terms of movement, and others saw the tilings in three- rather 
than two-dimensions. These unusual responses have implications for teaching. If 
tessellation is used as a means of developing students’ geometrical knowledge of the 
properties of shapes, and of symmetry and transformation, then opportunities are 
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needed for all students to learn about both aspects of tessellation: the nature of the 
shapes involved and also the kind of transformation applied.  
The mathematics of tessellation is not generally well developed in the school 
curriculum. This initial study suggests that young students do not necessarily respond 
to tiling patterns in expected ways. Further research into older students’ 
comprehension would be useful to explicate a developmental sequence of 
understanding of tessellation. In addition, further research into students’ apparent 
misconceptions would provide useful information relating to the development of 
ideas about symmetry and transformation. 
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FACILITATING PEER INTERACTIONS IN LEARNING 
MATHEMATICS: TEACHERS’ PRACTICAL KNOWLEDGE 

Olive Chapman
University of Calgary 

This paper reports on teachers’ practical knowledge [PK] about peer interactions [PI] 
in learning mathematics. The focus is on high school teachers who consistently engaged 
students PI in their teaching. Data consisted of interviews and classroom observations. 
Findings indicate that these teachers have PK of students’ roles in PI and learning 
activities and teacher’s behaviors to support PI that creates a meaningful classroom 
culture to facilitate PI in learning mathematics. Their classroom experiences and their 
conceptions of mathematics and learning played an important role in the PK. Their PK 
offers insights into pedagogical strategies that can be effective in facilitating PI. PK is a 
basis for teachers’ sense making and can play an import role in teacher education.

There are reform recommendations in mathematics education that assign a significant 
role to peer interactions in teaching and learning mathematics. For example, the National 
Council for Teachers of Mathematics [NCTM] standards advocate: 

Whether working in small or large groups, they [students] should be the audience for one 
another’s comments – that is, they should speak to one another, aiming to convince or to 
question peers [NCTM 1991, p.45].  

However, whether or how peer interactions get implemented in the classroom will likely 
depend on the teacher. Thus, the study in this paper focused on understanding peer 
interactions through the teacher. In particular, it investigated teachers’ practical know-
ledge of peer interactions in learning mathematics in terms of how the teachers made 
sense of peer interactions and when and how they incorporated it in their teaching. 
RELATED LITERATURE AND THEORETICAL PERSPECTIVE 
Studies on mathematics teachers have examined their content knowledge, beliefs, 
conceptions, classroom practices, learning, professional development and change (e.g., 
Chapman, 1997; Fennema & Nelson, 1997; Lampert & Ball, 1998; Leder et al., 2003; 
Schifter, 1998; Thompson, 1992). These studies have provided us with insights on, for 
example, the relationship between beliefs/conceptions and teaching, deficiencies in 
teachers’ content knowledge, and the challenges of teacher education and teacher 
change. In particular, research on the mathematics teacher suggests that an understanding 
of teachers’ thinking and actions are important to improve the teaching of mathematics. 
Boaler (2003) argued that researchers need to study classroom practices in order to 
understand the relationship between teaching and learning. The teacher is the 
determining factor of how the mathematics curriculum is interpreted and taught. Thus, it 
is important to learn from teachers what they do and how they make sense of what they 
do in the classroom. In this paper, the focus is on the teacher’s perspective of peer 
interactions in the teaching and learning of mathematics. 
The research literature provides a lot of theory on group or cooperative learning (e.g., 
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Davidson, 1990; Slavin, 1995), but there is little attention to the teacher’s perspective of 
it. Davidson provides several examples and “practical strategies” for using cooperative 
groups in mathematics teaching and learning. It is not clear what conceptions underlie 
teachers’ thinking that will help or hinder their integration of such approaches in their 
teaching. Investigating their practical knowledge is one way of making this explicit.  
Theoretically, the study is framed in a social or interactive perspective of learning and a 
practical knowledge perspective of teacher thinking, each of which is briefly described 
here. An interactive perspective on teaching and learning has been discussed by several 
people including Bauersfeld, 1979; Dewey, 1916; Lave & Wenger, 1991; and Vygotsky, 
1978. Lave and Wenger conceived of learning in terms of participation. Dewey 
emphasized learning through active personal experience and learning as a social process. 
In his view, purposeful activity in social settings is the key to genuine learning. 
Vygotsky claimed that individual development and learning are influenced by 
communication with others in social settings. In his view, interacting with peers in 
cooperative social settings gives the learner ample opportunity to observe, imitate, and 
subsequently develop higher mental functions. Specific to mathematics, Bauersfeld 
(1979) explained:

Teaching and learning mathematics is realized through human interaction. It is a kind of 
mutual influencing, an interdependence of the actions of both teacher and student on many 
levels. … The student’s reconstruction of meaning is a construction via social negotiation 
about what is meant and about which performance of meaning gets the teacher’s (or peer’s) 
sanction. [p.25] 

This theoretical perspective, then, promotes the position that learning takes place in a 
social setting and emphasizes human interactions as a key factor to facilitate learning. 
One way in which this perspective has been conceptualized in relation to the classroom 
is in terms of cooperative groups. Such groups have been promoted as having three key 
goals: to distribute classroom talk more widely, encouraging students to talk, to share 
their ideas and to become more actively engaged; to specify the social processes to help 
students to work cooperatively; and a way to develop their social and collaborative 
skills. However, like any tool, how these goals are interpreted and applied by teachers 
may or may not fit the interactive perspective beyond an instrumental level. In this study, 
peer interactions are considered to be classroom situations where students talk with 
students directly to learn mathematics. This includes small-group or whole-class 
situations but excludes situations where the teacher mediates a discussion, e.g., the 
teacher asks a student to react to another student’s response or a student initiates the 
response but directs it to the teacher who acts as a bridge between the students. 
The second aspect of the theoretical perspective framing this study is the construct of 
practical knowledge [PK]. PK has been used in research of the teacher to describe 
knowledge that guides teachers’ actions in practice (Johnston, 1992). Whereas scientific 
or formal knowledge is abstract and propositional, PK is experiential, procedural, 
situational, particularistic, and implicit (Carter, 1990, Fenstermacher, 1994). It 
corresponds with positions teachers take. It refers to teachers’ knowledge of classroom 
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situations and the practical dilemmas they face in carrying out purposeful action in these 
settings (Carter, 1990). Experience is an important source of PK.  
PK in this study is based on Sternberg & Caruso’s (1985) theory of it. In their view, PK 
is procedural information that is useful to one’s everyday life [which includes teaching, 
in the case of the teacher]. It is used in three main forms of interaction with the everyday 
world – adaptation, shaping and selection.  For example, a teacher would use PK to adapt 
to situations in the classroom, or to shape situations in the classroom or to make 
selections when choices are available. PK is stored as or conveyed by statements that 
embody “condition-actions sequences”(p. 135), i.e., if I do A (the condition), B (the 
action) will happen. In the case of teaching, such statements describe the procedure or 
condition that will bring about a certain action or performance state in students. For 
example: I know that students will not improve their achievement in mathematics if I use 
groups. PK can be probabilistic in nature. For example: If I use groups, it probably 
wouldn’t make a difference. Sternberg & Caruso explain, “Knowledge becomes practical 
only by virtue of its relation to the knower and the knower’s environment (p. 136).” This 
implies that a teacher’s PK is relevant to his or her personal context or classroom 
context. The goal of this study, then, is to identify conditions and actions for peer 
interactions that are common to a sample of teachers to understand how this process 
makes sense to them. 
RESEARCH PROCESS 
The data for this study is based on a larger study on teacher thinking in teaching word 
problems framed in a phenomenological research perspective (Creswell, 1998) that 
focuses on participants’ meaning, what they value, and how they make sense of their 
experiences. The participants were 22 elementary, junior high and senior high school 
mathematics teachers from local schools. The main criterion for selecting the teachers 
was willingness to participate. However, most of the ten high school teachers were 
considered to be exemplary teachers in their school systems. Some had won teaching 
awards. All of the participants were articulate and open about their thinking and 
experiences with word problems and mathematics. 
The main sources of data for the study were open-ended interviews and classroom 
observations. Interview questions were framed in a phenomenological context to allow 
the teachers to share their way of thinking and to describe their behaviors as lived 
experiences (i.e., stories of actual events). The interviews focused on their thinking/ 
experiences with word problems in three contexts: (i) past experiences, as both students 
and teachers, focusing on teacher and student presage characteristics, task features, 
classroom processes and contextual conditions, (ii) current practice with particular 
emphasis on classroom processes, planning and intentions, and (iii) future practice, i.e., 
expectations. Questions were often in the form of open situations, e.g., telling stories of 
memorable, liked and disliked classes involving word problems that they taught, giving a 
presentation on word problems at a teacher conference, and having a conversation with a 
preservice teacher about word problems. Because of the open-endedness of the 
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questions, their responses extended beyond word problems to their teaching of 
mathematics in general. Classroom observations over a 2-week period for each teacher, 
focused on the teachers’ actual instructional behaviors during lessons involving/related 
to word problems. Special attention was given to what the teachers and students did 
during instruction and how their actions interacted. Post-observation interviews with 
each teacher focused on clarifying her/his thinking in relation to her/his actions.
The analysis began with open-ended coding (Strauss & Corbin, 1998) of the audio-taped 
transcripts of interviews. The coding was done by the researcher and two research 
assistants working independently to identify attributes of the teachers’ thinking and 
actions that were characteristic of their perspective of teaching word problems. The 
focus was on significant statements and actions that reflected judgments, intentions, 
expectations, and values of the teachers regarding their teaching that occurred on several 
occasions in different contexts. The coding was followed by a review of the field notes 
and audio-taped transcripts of classroom observations to triangulate the findings from the 
interviews and add and clarify situations. This was followed by comparison of the 
findings by the three coders and revisions made where needed. The coded information 
for each participant was then sorted into themes that conveyed the significant features of 
his/her thinking and teaching. Peer interaction was one of the themes that emerged. In 
order to elaborate on this theme, the researcher and two assistants returned to the data to 
obtain details of all situations that conveyed it and to identify the conditions and actions 
that constituted the teachers’ PK about peer interactions. Verification procedures, then, 
included triangulation, using data from a variety of sources, cross checks by research 
team, and elimination of initial assumptions/themes based on disconfirming evidence.  
PRACTICAL KNOWLEDGE OF PEER INTERACTIONS 
The findings reported here focus only on those teachers who consistently provided 
opportunities for students to engage in peer interactions. These were the eight high 
school teachers who were identified as exemplary in teaching mathematics. There was 
more depth and scope to their PK than that of the other teachers. Their PK was 
influenced by their experience as a teacher, for e.g., they recognized that teachers and 
students vary in their explanations of the same content. For example, 

I don't see things the way kids see things, and I don't solve problems the way kids solve 
problems, … If you're explaining something, they can sit and look at the board and you 
can tell they don't get it … so you ask somebody else in class and they might say exactly 
the same thing I've said …and then the kid will go, yes that's right, I understand, and 
you're there, like, but I just said that. … Somehow they know how to relate it to each 
other, and many times they can express things in different ways that I haven't thought of.  

 Their PK was also influenced by their own experience with peer interactions, for e.g.,
I need to talk and often when I talk some of my best ideas come out.  Writing about it 
doesn't always do it for me, so I think the peer interaction can do that. 

Conditions and actions for four themes characterized the teachers’ PK of peer 
interactions: conceptions [conditions] that support a social perspective; students’ 
behaviors/outcomes [actions] for/from peer interactions; learning activities [conditions] 
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to support peer interactions; and teacher’s behaviors [actions] to support peer 
interactions. Each is discussed with examples of representative quotes from the teachers. 
Conceptions That Support a Social Perspective: The teachers’ PK included a view of 
mathematics and learning that supported a social perspective of mathematics education 
and embodied the need for peer interactions in their teaching. For example: 

- Math is primarily a problem solving activity and problem solving is a social activity.  
- Mathematics to me is a shared experience.  
- I believe math is a language and to be able to articulate it is a very important part of the 
learning process.
- Learning comes through talk, comes through discussion.  
- Mathematics learning occurs when the learner understands and can explain the concept 
that has been presented in their own words … and knows it sufficiently to teach to 
someone else, talk about it to someone else.    

Students’ Behaviors/Outcomes for/from Peer Interactions: The teachers’ PK 
indicated that through peer interactions, students learn mathematics from and with each 
other as they engage in/achieve the following seven behaviors/outcomes. 
Compare experiences: This allows students to learn about learning. For example,

Getting information from your peers helps you understand that there are people who are 
experiencing the same difficulties as you or have a perspective that you can share. 

Share ideas: This allows students to collaborate and expand their thinking. For e.g.:
- They can bring something to this situation that you may not have thought of. 
- Sometimes a student just doesn’t understand, and then another student will go well 
what about such and such, and together they can formulate a conclusion. Whereas, 
individually, they would have been stuck.
- Just by people sharing each other's views, they help refine each other's views.  

Articulate mathematics: This involves students orally expressing mathematics in words 
or describing and explaining it (e.g., concepts) in a meaningful way. For e.g.:  
 - They have to explain in plain English what something means.  

- They talk math language … they use the language and each other understands more 
than they do with the teacher. 
- By having the students explain, they put it in words or they put it in a context that is 
more meaningful than I have done.    

Pose questions: This involves students “asking each other questions” and allowing
the rest of their group to question them and to debate with them whether or not what 
they've told the group is valid or whether or not that's taking them down the garden path.  

 Be motivated and gain confidence: For example, 
- They motivate each other and help build confidence. 
- They lend support to each other and … motivate each other to get their work done.  

Gain autonomy: This involves students depending less on the teacher’s thinking. For e.g 
They won't always look to the teacher for solutions, they'll look to each other, … but also 
they get to interact more with each other, and can use each other more to enhance their 
own learning.

Test understanding:  For example,
-  It's only through peer interaction that you get to test out your thoughts, your ideas, that 
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you get to formulate your own perception of the mathematics that confirms for you that 
you understand it. 
- It's by saying, “Well now, how did you get that?” My answer doesn't look like that.  It's 
with peers beside you that they start to discuss and compare their work, compare the 
answers, compare the steps and they promote each other's learning and understanding. 

Learning Activities That Support Peer Interactions:  The teachers’ PK indicated that 
by engaging students in the following five learning activities/experiences, they will have 
opportunities to engage in peer interaction. The focus, as one teacher noted, is to 
“encourage students to investigate and solve mathematical problems with each other.” 
Inquiry of the problem-solving process: The teachers allowed students to work in groups 
to learn about problem solving. For example, some teachers presented students with a 
problem to solve on their own. More importantly, they were required to analyze their 
process by considering, for e.g., what they did, why used that method, why it worked, 
how they made sense of the problem and the solution. This is followed by group sharing 
and whole-class discussions. The process is repeated for a few problems to establish a 
model for solving problems. One teacher had students work in groups to solve the 
problem, but one student in each group assumed the role of observer and “looks at the 
process that is going on to solve the problem”. Each student got a turn at being observer. 
A whole-class sharing and comparison of findings followed each round of observations. 
This process eventually led to the development of a problem-solving model. 
Inquiry of a new concept: The teachers used peer interactions in a variety of ways in 
introducing a new concept. The most common approach was to allow students to explore 
a situation in small groups before the teacher provided any explanations or led a 
discussion on it. The situation could involve “just looking for patterns and relationships” 
to make sense of a concept or trying to solve a problem to understand a procedure. For 
example, in introducing systems of equations, one teacher presented a scenario involving 
weights of large and small cats by drawing a picture of it on the board and asking 
students to work in their groups to find the weights of the cats.  She gave no other 
direction. After students shared and compared their approaches, she connected them to 
the formal approaches. Another teacher assigned each group a different method of 
solving systems of equations and required that they analyzed solved examples to 
understand the method. Each group then taught the method they explored to the other 
groups, trying to convince each other that their method was the best approach.  
Whole-class presentation: The teachers encouraged students to interact during whole-
class presentation. The common approach was that, students’ did not only present and 
justify their solutions, but, for example: 

They have to encourage others, okay now what did you use, and how did it work, how 
did you do it and which method do you think you like better, and why. 

One teacher, as an introduction on systems of equations, had students collect pictures of 
real-life situations of graphs that intersect and take turns to lead a discussion about

What the graph represents, the significance of the graph, what it means when graphs 
intersect, what the intersection shows, why the intersection is important, why anyone 
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would want to find the intersection in the first place.
Practicing problem solving: Students practiced problems individually or collaboratively, 
but always had the opportunity to discuss their work with peers. 
Investigations/projects: Students planned and conducted group projects that included the 
use of technology, use of art and outdoor activities, e.g., finding heights of tall objects.  
Teacher’s Behaviors to Support Peer Interactions: The teachers’ PK indicated that 
the following four behaviors of the teacher will facilitate or support peer interactions that 
promote learning.  
Listens and observes:  This provides the teacher with feedback to determine when and 
how to intervene. For example: 

I circulate and I listen to the kinds of conversations that go on in the groups and how are 
they processing the information, how are they developing the strategies that they are 
going to use and try and get some clues on what they understand. 

Questions and prompts:  This involves the teacher using questions to extend concept 
development or check for understanding or prompts when students are stuck. For e.g.:

- I ask them questions if they're stuck but that's about it. … I will try to come up with a 
question that will allow them to continue but I will not give them the answer at any time. 
- My role is to ask questions, not to give answers. … It is by how you ask the questions 
that they gain access to the answer that they wanted you to just tell them.  

Supports students’ thinking: For example, 
- I make sure that I tell them that I don't care how they solve it, but they have to say 
exactly how they did this. 
- Make them aware that they have tools, mathematical tools, then give them the freedom 
to use whatever they want to solve these problems. 
- I always tell students I am not the only expert in the classroom and I learn from you 
just as well as you learn from me. 

Models questioning: This involves the teacher using a questioning approach during 
whole-class instruction that students then mirror.  For example: I notice they ask

themselves the same questions when they’re group working on problems. 
Promotes good peer relations: As one teacher explained, “If you can facilitate good peer 
relations then you can have some really healthy dialogue.” Some ways in which this occurred 
were through shared questions, seating plan, voluntary grouping, and peer observations:

- You can only ask me a question when all of you [in a group] share the same question. 
- I sit them beside each other in groups.  There's no time that they're ever in isolated rows 
or isolated desks. …I don't force the groups because I think that just creates a social 
conflict when you're trying to deal with the math conflict.

A unique approach used by one teacher was having each student take turns observing 
his/her group behaviors as the group solved genuine mathematics problems. 

They are looking at how the actual group interaction occurs so they do become a good 
cooperative learning group and they support … and work with each other.

CONCLUSION
The findings indicate that PK is a basis for the teachers’ sense making in using peer 
interactions [PI] in their teaching. These teachers have PK of PI that facilitates a 
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meaningful classroom culture to support the learning of mathematics. Their experience 
provides evidence that this instructional approach is a feasible and meaningful way of 
teaching high school mathematics. The findings also suggest that the teachers’ classroom 
experiences and conceptions of mathematics and learning play an important role in 
characterizing their PK. This has implications for teacher education. For e.g., positive 
personal experiences with PI may be necessary for teachers to develop meaningful PK. 
Exposure to PK of teachers like these participants could open the door to gaining such 
experience. Their PK offers examples of the way things are or could be. Also, since all 
teachers, including preservice teachers, have some PK used as a basis of sense making of 
PI, providing them with theory on PI that conflicts with their PK could be problematic 
for them if their PK is not explicitly dealt with. The findings of this study offer a 
structure against which other teachers could examine their PK, either through reaction 
against or resonance with what is offered, to understand it. Finally, this conception of PK 
can be used to study other aspects of teaching mathematics. 
Note: This paper is based on a research project funded by the Social Sciences and Humanities 
Research Council of Canada. 
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Teachers’ concerns and efficacy beliefs (EB) are important for the success of any 
reform. Previous research has shown that teachers’ concerns develop in three levels: 
self, task and impact, respectively. Thus, this study examines the concerns and EB of 
primary teachers with respect to a reform concerning the use of Schema Theory in 
teaching problem solving (PS). A proposed model connecting teachers’ EB and concerns 
is also tested. Analysis of data suggests that teachers’ concerns were situated in the first 
level; teachers seemed to feel more efficacious in teaching PS without using the reform. 
Teachers’ concerns were affected by their EB, which in turn, were affected by first-level 
concerns. Concerns of succeeding levels were also influenced by concerns of preceding 
levels. Implications of findings for the development of the reform policy and for further 
research are drawn.

INTRODUCTION
Following international trends, a reformed primary mathematics curriculum was 
introduced in Cyprus in 1998. One of the characteristics of the reform was the use of 
a model for solving problems, mainly based on Mashall’s Schema Theory (1995). 
The model was in operation for the last five years, during which the teachers involved 
expressed contradictory evaluations about the practical usefulness of the model to 
enhance students’ problem solving (PS) ability.
Research findings during the last two decades underlined the importance of 
examining teachers’ reaction towards a reform; any change is associated with new 
demands on the part of the teacher and naturally the success of any reform effort 
depends highly on the teachers’ role (Amit & Fried, 2002; Sztajn, 2003). Two 
research domains that have been studied excessively during the last three decades, 
i.e., teachers’ concerns and teachers’ efficacy beliefs (EB) are nowadays revisited and 
connected to teachers’ attitudes towards the implementation of a reform, as well to 
each other. Research has shown that these constructs influence teachers’ attitude 
towards a reform and their attempts to implement it (Tschannen-Moran, Woolfolk-
Hoy & Hoy, 1998; Piggie & Marso, 1997).  
Fuller introduced the concept of teachers’ concerns in the late 1960s (van den Berg & 
Ros, 1999) and put forward a classification of teachers’ concerns consisting of three 
developmental levels, namely self, task and impact concerns. Self-concerns mainly 
relate to the teachers’ anxiety about their ability to take over the new demands in the 
school environment, task concerns refer to the daily duties of a teaching job, 
especially in relation to a number of limitations such as time constraints, teaching a 
large number of students or the lack of resources. Finally, impact concerns deal with 
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teachers’ apprehension concerning students’ outcomes. Incorporating Fuller’s 
conceptualization, the Concerns Based Adoption Model (CBAM) (McKinney, Sexton 
& Meyerson, 1999) identifies seven stages of concerns: awareness, informational, 
personal, management, consequences, collaboration and refocusing. The first three 
stages constitute self-concerns, the fourth relates to task concerns and the three latter 
represent impact concerns. According to the model, initially teachers have little 
knowledge of the innovation (awareness); later on, they are concerned about their 
ability to respond to the requirements of the reform (personal) and they show their 
willingness to learn more about it (informational). Self-concerns gradually decrease 
and teachers focus on managing the reform (management). Finally, teachers 
overcome tasks concerns and focus upon the effects of the reform on students’ 
learning (consequences) and seek for cooperation with their colleagues 
(collaboration); they also make suggestions for improvements regarding the reform 
(refocusing). Though there was evidence about the developmental nature of teachers’ 
concerns (e.g., van den Berg & Ros, 1999; Piggie and Marso, 1997), to the best of 
our knowledge, no systematic attempt has been undertaken to test the assumptions of 
the CBAM.
The construct of efficacy beliefs (EB) was initiated in the 1970s and refers to one’s 
ability to plan and execute actions to achieve a goal (Bandura, 1997). EB were found 
to exert great influence in adopting and implementing an innovation; teachers 
possessing high EB harbor more positive attitudes towards the innovation, are more 
likely to implement it and regard it as important and compatible with their traditional 
way of working (Tschannen-Moran et al., 1998). Moreover, these teachers are more 
willing to experiment with new teaching approaches and materials, and are less 
anxious about the reform and the possible limitations or complications deriving from 
it (Bandura, 1997).
Recently, research has employed both these concepts to study the implementation of 
a reform; it has been shown that there is an interaction between teachers’ EB and 
their concerns about the reform. Specifically, teachers with low EB have been found 
to display intense self and task concerns compared to their high efficacious 
colleagues (Ghaith & Shaaban, 1999). Moreover, the more efficacious teachers are 
feeling regarding the innovation, the more intense are their impact concerns 
(McKinney et al., 1999). It has been also found that teachers’ concerns are largely 
affected by their EB (Christou, Philippou, Pitta-Pantazi & Menon-Eliophotou, 2002). 
However, researchers have moved only in one direction focusing on the extent to 
which EB affect teachers’ concerns. It can be claimed that teachers’ concerns, 
especially those related to awareness about the reform, may influence their level of 
EB. This assumption is based on the fact that research reveals that teachers’ 
knowledge in a specific domain influence their efficacy in teaching subjects related to 
this domain (Wenner, 2001).  
In the light of the above, the purpose of this study was twofold. It aimed to examine 
teachers’ concerns and EB in teaching PS by using the reform model and to develop a 



www.manaraa.com

PME28 – 2004  2–201

model connecting teachers’ EB and concerns. Specifically, three hypothesis were 
tested: (a) teachers’ concerns can form a hierarchical model (awareness, 
informational, personal, management, consequences, collaboration and refocusing), 
with preceding stages affecting teachers’ concerns in subsequent stages, (b) EB affect 
teachers’ second and third level concerns (task and impact concerns), while they are 
affected by their first level concerns, and (c) teachers’ EB about employing 
approaches used prior to the reform, affect their concerns about the reform.

METHODS
Stratified sampling was used to select 27 (rural and urban) primary schools in 
Cyprus. Since the new PS model is introduced in the fourth grade, and employed 
henceforth, the teachers of the aforementioned schools who were teaching at the three 
upper grades completed a questionnaire of 52 items on a nine point Likert scale that 
reflected their concerns and EB as regards the specific reform. Specifically, was used. 
Thirty-seven items derived from the Stages of Concerns included in the CBAM, 
translated in Greek and reworded to reflect the characteristics of the specific reform; 
the remaining 15 statements referred to teachers’ EB. Responding to the need to 
increase the specificity of efficacy items (Nielsen & Moore, 2003), statements were 
developed to measure teachers’ EB in teaching PS either by using the new model or 
by employing traditional strategies used prior to the introduction of the reform. The 
response rate (90.4%) was very high, since 151 out of the 167 teachers completed the 
questionnaires.
The data were initially analyzed through exploratory factor analysis, which identified 
non-directly observable factors based on teachers’ responses. Structural equation 
modeling was next employed to test the hypotheses of the study. Maximum 
likelihood method was used to estimate the model parameters, since this method does 
not require data from extremely large samples (Kline, 1998). More than one fit index 
was used to evaluate the extent to which the data fit the models tested. Specifically, 
the scaled chi-square, Bentler’s (1990) Comparative Fit Index (CFI), and the Root 
Mean Square Error of Approximation (RMSEA) (Brown & Mels, 1990) were 
examined.

FINDINGS 
Exploratory factor analysis resulted in a seven-factor solution explaining 62.45% of 
the total variance. The seven factors were related to teachers’ EB and concerns and 
were identical to those mentioned in the specification table of the questionnaire. This 
finding provides support to the construct validity of the questionnaire used to collect 
data on teachers’ EB and concerns about the reform (Cronbach, 1990). Thus, factor 
scores for each dimension were estimated, by calculating the average of the items that 
comprised each factor. The mean scores, the relevant values of standard deviations 
and Cronbach’s alpha values for each factor are presented in Table 1. 
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No Factors x * SD A
Factors related to teachers’ EB    

1.  EB in teaching PS without using the model. 7.74 0.94 .77 
2.  EB in teaching PS by using the model.  6.49 1.46 .92 
     

Factors related to teachers’ concerns:    
1.  Need for Information.   6.73 1.70 .81 
2. Awareness  5.51 1.81 .81 
3. Refocusing-negative criticism towards the model. 5.37 1.93 .87 
4.  Consequences on students  5.11 1.86 .89 
5. Management  4.70 1.47 .69 
* In a 9 point-scale (1=negative and 9=positive) 

Table 1: Means, Standard Deviations, and Cronbach’s alpha coefficients of the seven 
factors identified by exploratory factor analysis. 

Table 1 shows that the values of Crobach’s alpha of six factors are relatively high 
(i.e. ranging from .77 to .92). This implies that the measurement errors of these six 
scales are relatively low and thereby the collected data on the six factors can be 
considered reliable. On the other hand, the reliability of the “management” factor is 
moderate satisfactory (.69). Nevertheless, this can be attributed to the procedure used 
to estimate Cronbach’s Alpha, which is highly dependent on the number of items of 
each scale (Norusis, 1993). Thus, the low value of the Cronbach Alpha of this scale is 
partly due to the fact that only four questionnaire items were used to measure this 
factor. Table 1 also suggests that teachers’ level of EB (either by using the model or 
without it) was quite high. However, the paired t-test revealed that their EB in 
teaching PS without using the reform model were significantly higher than their 
corresponding beliefs in using the reform (t=10.40, df=136, p<.001). Table 1 also 
shows that teachers experienced intense concerns related to the level of the 
information they have received about the reform. Though teachers adopted a rather 
critical approach to the model ( x =5.37), in general this opinion was not strong 
enough, since its standard deviation was relatively high (SD=1.93). Similarly, 
concerns about the consequences of the model on pupils and the management of the 
reform appeared moderate. In general, it can be argued that five years after the 
introduction of the reform, teachers’ concerns were mainly situated in the first level 
of concerns (awareness and information).
Kendall’s test was subsequently employed in order to rank the different types of 
teachers’ concerns, based on the level of their intensity. Specifically, the Kendall 
Coefficient of Concordance was calculated and revealed a significant level of 
agreement among teachers about the intensity of different types of concerns (w=.21, 
p<.001). Informational concerns were placed at the “intense” end of the scale (mean 
rank, mr =4.16), along with the concerns reflecting teachers’ awareness of the reform 
(mr=3.15). The refocusing concerns were somewhere in the middle (mr=2.86), while 
at the least “intensive” end one could identify teachers’ concerns regarding the 
consequences on pupils (mr=2.45) and managing the reform (mr=2.38).     
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The factor scores of the seven factors identified above were also employed to search 
for the relationships between teachers’ concerns and EB, using the EQS (Bentler, 
1995). As reflected by the iterative summary, the goodness of fit statistics showed 
that the data did not fit the model very well (x2=14.12, df=6, p<.03; CFI=.978, and 
RMSEA=.170). Subsequent model tests revealed that the model fit indices could be 
improved by adding another path joining management concerns and refocusing. The 
model that emerged after this modification had a very good fit to the data (x2=8.25,
df=7, p>.23; CFI=.997 and RMSEA=.036). Figure 1 shows the model that emerged, 
as well as the path coefficients among the seven factors. The following observations 
arise from Figure 1. First, teachers that held high EB to teach PS without using the 
model tended to support that they had received more information regarding the 
reform. On the other hand, the more aware teachers were about the reform, the 
higher their EB were to teach by using the model. Teachers’ EB to teach PS by 
using the reform were also explained by their efficacy to teach PS without using the 
model. Second, the more aware teachers were about the reform, the lower their need 
was to get more information as regards the underlying theory, philosophy and aims 
of the reform.

Figure 1: Path model of the seven factors linked to teachers’ efficacy beliefs (EB) and 
concerns regarding the implementation of the problem solving reform.

Third, teachers’ second level concerns (management concerns) were explained both 
by their concerns of the preceding stage as well as by their EB. Namely, teachers 
who supported that they had received a satisfactory level of information regarding 
the reform, and who reported a high level of efficacy to teach PS by using the model 
were less concerned about issues related to managing the reform. On the contrary, 
teachers who conceived themselves as highly efficacious in teaching PS without 
using the model were highly concerned regarding the management of the reform.  
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Fourth, teachers’ third level concerns were explained by their second level 
management concerns as well as by their EB. Specifically, teachers that harbored 
high EB in teaching by using the reform, low EB in teaching PS by employing 
approaches used prior to the introduction of the reform and who reported low 
concerns regarding the management of the model were less concerned about the 
consequences of the reform on pupils. It should also be noted that management 
concerns explained more variance of teachers’ concerns about the consequences of 
the reform on pupils than their EB to teach PS either by using the model or without 
it. The same pattern was also identified in the case of refocusing concerns, though, 
in a revered order. Namely, the more efficacious teachers tended to be in teaching 
PS without the model and the least efficacious they felt in using the model, the 
stronger they supported the need to abolish the model and resort to previously used 
PS teaching approaches. Moreover, even though management and refocusing 
concerns did not appear subsequently, the higher teachers’ concerns were regarding 
the management of the reform, the more they were disfavor of the reform.  
In general, the model of Figure 1 verified the three examined hypotheses: The 
factors related to concerns were found to form a hierarchical model, with every 
preceding stage explaining a proportion of the variance of the subsequent stage. On 
the other hand, EB affected teachers’ second and third level concerns. Finally, 
teachers’ level of awareness was found to influence their EB to teach PS by using 
the reform, whereas these concerns were affected by teachers’ EB to teach PS 
without using the model.  

DISCUSSION   
The findings of the study reveal that even five years after the implementation of the 
reform Cypriot teachers mainly exhibit self-concerns. Namely, teachers were more 
concerned about the level of their awareness about the reform; thereby they expressed 
intense concerns about the need to receive more information about the reform. This 
finding is in line with previous research suggesting that self-concerns are not quickly 
solved and that it may take three to five years before teachers move from this level of 
concerns to the next one (van den Berg & Ros, 1999). Teachers were also found to 
harbor relatively positive EB about PS, either by using the model or by resorting to 
teaching strategies used prior to the introduction of the model. This finding seems 
reasonable, taking into account the emphasis given to PS in Cyprus (Charalambous, 
Kyriakides & Philippou, 2003). However, it should be recognized that teachers 
harbored a higher level of EB in teaching PS without using the model, justifying 
previous findings (Fullan, 1991; Ghaith & Shaaban, 1999) according to which 
teachers feel more efficacious in using tested and tried methods than employing 
innovative approaches in their teaching.
The present study also provided support to the assumption that the various stages of 
teachers’ concerns can form a hierarchical model, since it was found that teachers’ 
concerns in succeeding stages were influenced by their concerns in preceding stages. 
However, the path connecting management and refocusing concerns identified in the 
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study supports that teachers might simultaneously experience concerns of different 
levels. This is in line with recent findings (Burn, Hagger, Mutton & Everton, 2003) 
and raises doubts about the existence of a developmental scale able to discriminate 
teachers in distinct stages of concerns. Further research could elaborate more on this 
assumption, testing the possibility of placing teachers into different levels 
representing a mixture rather than discrete concerns. Specifically, item response 
theory models could be used to examine the separability of the person estimates scale 
(Charalambous et al., 2003).
Moreover, the study illustrated the important role of EB in the implementation of a 
reform. Teachers holding higher EB in using the reform model were found to 
experience less worries about issues related to the management of the reform and the 
influence of the reform on students’ achievement; they were also less critical about 
the reform. It should be noted, though, that teachers’ efficacy was affected by their 
level of awareness about the reform, indicating that a first step in developing 
teachers’ efficacy is to provide them ample information about the philosophy and 
aims of the reform. In the present study a new element was also added to the efficacy 
and concerns model, i.e., teachers’ efficacy in using strategies employed before the 
introduction of the reform. This type of teachers’ efficacy exerted the same influence 
on their concerns, but in a reversed way, suggesting that teachers who feel efficacious 
to teach by using certain teaching strategies criticize a reform more and foresee more 
problems as a result of its implementation. In sum, the findings of this study are in 
line with previous findings showing that EB are important factors to be considered in 
efforts to initiate and sustain educational change (Mc Kinney et al., 1999).  
In the light of the above, policy makers could try to improve teachers’ awareness 
about the reform, by providing them ample information related to it. By doing so, 
they make the first step to advance teachers’ efficacy, which subsequently may help 
teachers envision fewer problems when requested to implement a reform and make 
them less critical to it. Reacting positively towards a reform is indeed important, 
taking into account teachers’ resistance to mathematics reforms (Amit & Fried, 
2002). It should be finally indicated that future research needs to cross-validate the 
model that emerged from the present study, both by looking at different forms of 
changes in mathematics and by collecting data in different educational settings.
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WHAT IS UNUSUAL? THE CASE OF A MEDIA GRAPH  
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Three hundred and twenty-four middle school students considered a group of three 
graphs in a newspaper article about boating deaths. The graphs contained 
discrepancies and the students were asked to “comment on unusual features.” This 
form of questioning produced a distribution of responses surprising to the authors 
and perhaps challenging to current goals for statistical literacy. Of these students, 
201 answered the same question two years later and although overall performance 
improved to some extent there were still very few high level responses. The outcomes 
point to specific suggestions that can be made for middle school classrooms in line 
with the goals of statistical literacy.

INTRODUCTION
Quantitative literacy and critical numeracy have emerged as avenues for considering 
mathematics in a reform curriculum aimed at catering for all students (Steen, 2001); 
in the same way statistical literacy is taking the chance and data curriculum to a wider 
audience. Adults need to interpret the information with which they are inundated 
daily; but what are the criteria for effective decision-making? International adult 
literacy surveys (e.g., Dossey, 1997) have considered document literacy and 
quantitative literacy alongside prose literacy as significant tools required by adults in 
western society. The tasks employed in these surveys have a strong reliance on 
statistical ideas, particularly graph interpretation. 
Gal (2002, pp. 2-3) suggested that statistical literacy considers people’s ability to 
interpret and critically evaluate statistical information, and their ability to 
communicate their understanding, concerns, and reactions. Watson (1997) proposed a 
three-tiered hierarchy for statistical literacy, incorporating (i) an understanding of 
basic statistical terminology and tools, (ii) an understanding of these terms and tools 
within societal contexts, and (iii) the ability to question claims made without 
appropriate justification. These steps are similar to the code-breaking, text-meaning 
and usage, and critical thinking components associated with models of critical 
literacy (e.g., Freebody & Luke, 2003). 
The current study arose from a larger project that was focused on school students’ 
appreciation of variation as the foundation of the chance and data curriculum (see, 
e.g., Watson & Kelly, 2002, 2003). Although the aim of the larger study was to 
describe the development of the understanding of statistical variation, tasks were 
developed in contexts that employed the specific topics in the curriculum, such as 
chance events, averages, and graphs, and thus considered aspects of statistical literacy 
as well. The contexts varied, including simple settings such as rolling a die, familiar 
settings such as a school survey, and unfamiliar social settings such as would be 
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found outside of school. It is for this last setting and the topic of graphs that the task 
discussed here was devised.
The graphs upon which the task was based are shown in Figure 1 (Haley, 2000) and 
were chosen for their potential for measuring aspects of statistical literacy in a 
context involving authentic variation. The straightforward bar graph style was 
considered accessible to all students at the middle school level. Having three graphs 
instead of one allowed features to be compared and contrasted. The context for the 
graphs—boating deaths in the state where the students lived—was considered 
comprehensible, as well as a social issue worth considering in terms of the goals of 
statistical literacy. There were two anomalies in the graphs that would allow students 
to question and display critical statistical literacy skills. There was also variation in 
the graphs, which was an underlying feature of the larger study.  

BOATIES' SAFETY FAILURE 

These graphs were part of a newspaper story reporting on boating deaths in Tasmania. 

Figure 1: Set of three graphs used in the task (Haley, 2000)
Of interest was what students would attend to when examining the graphs. What 
aspects of the graphs would they find “unusual”? Would they be influenced by the 
authentic nature of a newspaper extract and be unwilling to question it? Specifically, 
this study examines the categories of response that characterise middle school 
students’ descriptions of unusual features of bar graphs from the media (containing 
technical discrepancies). It also considers whether the responses change over a two-
year period. 

METHODOLOGY 
Sample. The sample consisted of 156 students in Grade 7 (age 12-13) and 168 
students in Grade 9 (age 14-15) at four government high schools in the Australian 
state of Tasmania. Of these students, 137 in Grade 7 and 64 in Grade 9 responded 
again two years later. Fewer students were surveyed in Grade 11 because many leave 
or change schools at the end of Grade 10.
Procedure. The task was Question 10 in a 45-minute written survey with 15 
questions, many with multiple parts (see Watson, Kelly, Callingham, & Shaughnessy, 
2003, for the full survey). It was the only question based on a bar graph or a graph 
from a newspaper. The instruction, “Comment on any unusual features of the 
graphs,” was intended to motivate students to consider various aspects without being 
so explicit as to influence students’ focus. Two large labelled spaces were provided to 
encourage careful consideration and reflect the plural use of the word “feature,” thus 
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permitting two responses. The task behaved well in a measurement sense (Watson et 
al., 2003) based on the two different hierarchical codings described below.
Analysis. For the purposes of coding the two responses were treated together. Coding 
was conducted by a research assistant and the first author following the development 
of two coding schemes. The first scheme, in Table 1, reflected the appropriateness of 
responses based on the information in the graph and the steps to Critical Statistical 
Literacy (CSL) noted earlier. The four coding levels of increasing appropriateness 
had various subcategories defined to reflect the diversity of responses. The second 
coding scheme, shown in Table 2, was based on the increasing structural complexity 
of responses in Appreciation of Variation (VAR). Four levels of response were 
defined, with one having three subgroupings. As indicated by their definitions these 
two coding schemes were used to reflect the different possible interpretations of the 
task based on the twin aims of investigating variation and statistical literacy. 
Code Sub Code Description of Category for Critical Statistical Literacy (CSL) 

0  Inappropriate responses 
 0A  No response 
 0B  Idiosyncratic/“nothing unusual” 
 0C  Inferring from graph: Advice 
 0D  Direct graph interpretation, without mentioning anything unusual 
 0E  Incorrect graph interpretation of unusual data 
1  Partially correct interpretation: Unusual data or graphing 
 1A  Very general comments about graphing elements 
 1B  Both correct and incorrect interpretations of unusual data 
2  Correct graph interpretation: Unusual data or graphing 
 2A  Correct but non-specific interpretation of unusual data  
 2B  Specific statistical comment about graphing elements 
3  In-depth graph analysis: Recognises mistakes 
 3A  Identification of a mistake, but error in explanation
 3B  Correct identification of at least one mistake  

Table 1: Coding scheme based on Critical Statistical Literacy criteria
Code Sub Code Description of Category for Appreciation of Variation (VAR) 

0  No acknowledgement of variation 
1  Focus on columns 
 1A  Focus on a single column 
 1B  Comparison across two columns 
 1C  Focus on the highest column as “most” 
2  Focus on increase in the data over time 
3  Acknowledgement of variation 

Table 2: Coding scheme based on criteria related to Appreciation of Variation
All responses had two codes associated with them, one for CSL and one for VAR. As 
an example, the response “That 35 people died from not wearing life jackets, 8 from 
alcohol” was coded as 2A in the CSL coding scheme for its non-specific 
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interpretation of the data, and as 1A in the VAR coding scheme for its focus on single 
columns. The research assistant coded the responses, which were checked by the first 
author, with inconsistencies decided by discussion (cf., Miles & Huberman, 1994).  

RESULTS
The results report students’ response categories distinguished by the coding schemes 
for Critical Statistical Literacy (CSL) and Appreciation of Variation (VAR). Changes 
in response levels over two years are also reported for some students. Students’ full 
responses have been edited in some cases to show only the salient features. 
Responses for the CSL coding scheme 
As shown in Table 3, a large percent of students in both Grades 7 (44%) and 9 (40%) 
did not respond at all to the task (Category 0A). Typical responses in Category 0B 
indicated nothing unusual or were idiosyncratic, such as “They all look okay to me.” 
Some students focused on giving advice based on the information in the graphs 
(Category 0C), rather than something unusual; for example, “People should wear life 
jackets.” Category 0D responses commented on something in the graph but without 
focusing on anything unusual, such as “The graphs show us that boats are just as 
dangerous as cars are.” Finally, Category 0E contained responses that identified as 
unusual something that would not be considered unusual in a statistical sense or that 
was not based on information in the graph, as seen in “Hardly anyone wore life 
jackets in 99” or “Less people died by not wearing life jackets.” 
Code 0  1  2  3   
Sub Code 0A 0B 0C 0D 0E  1A 1B  2A 2B  3A 3B  Total
Grade 7 68 7 5 3 5  2 3  53 6  2 2   
 Subtotals 88 (56) 5 (3) 59 (38) 4 (3)  156 
Grade 9 67 9 0 4 0  2 8  61 13  2 2   
 Subtotals 80 (48) 10 (6) 74 (44) 4 (2) 168

Table 3: CSL categories: number (percent) for each grade 
At Level 1, responses were partially correct and addressed unusual data or the format 
of the graph. Category 1A responses made very general or vague statements, such as 
“They’re all different graphs. They’re [sic] all got different meanings.” Category 1B 
responses included both correct and incorrect interpretations. One student wrote 
“Most people drowned in 1999. A lot of people were tanked [drunk].” 
Responses at Level 2 reflected what students considered unusual features of the data 
or graphs but which were not related to the errors therein. In category 2A were non-
specific comments about the unusual nature of the data. Examples include “The 
number of deaths has risen over the years.” The other subcategory of Level 2 (2B) 
was much smaller, consisting of at least one comment on something unusual about 
the graphs themselves; for instance, “The way they’re set out. They don’t have 
anything telling you what the Y and X axes are.” 
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Of the Level 3 responses that found mistakes, the first group (3A) made errors in 
reporting these, e.g., “Well on graph 1 it says there is a total of 46 but I counted and it 
has only got 38.” In the final group (3B), responses focused correctly on the 
discrepancies in the graphs, such as “The first graph has a mistake, the 6 is on 2.” 
Responses for the VAR coding scheme 
Level 0 responses for the VAR coding summarized in Table 4 included both non-
responses and responses that had no comments that would indicate a student had 
considered change or variation in the graphs. Many of the latter, such as “The first 
one says total: 46, but the graph shows 50 people” may have been placed at much 
higher levels in the CSL coding.
Code 0 1A 1B 1C 2 3 Total 

Grade 7 89 (57) 40 (26) 3 (2) 14 (9) 4 (3) 6 (4) 156 
Grade 9 97 (58) 26 (15) 13 (8) 22 (13) 5 (3) 5 (3) 168 

Table 4: Variation categories: numbers (percent) for each grade 
At Level 1 there were three subcategories focusing on columns. In the first (1A), 
attention was given to a single column. One student wrote “35 people weren’t 
wearing a life jacket. Tonnes of people keeled over [died] in ’99.” Category 1B 
responses considered two columns: for example, “From ’87 the deaths have shot up 
from 6 to 12”. In the third group (1C), responses focused on the highest column as 
“most”, as exemplified in “There were more deaths in ’99 than any others.” 
Level 2 responses recognised increases in the data over time, and included “The 
number of deaths has risen over the years.” Level 3 responses made a comment 
relating to the variation, such as “Most of the people who die were spread out but 
there was a major increase in ’99.” 
Change in response categories over two years 
Table 5 shows the categories of responses related to CSL for the subgroup who 
completed the survey two years later. There was some improvement, with fewer 
students responding at Level 0. The Grade 7/9 students performed better than the 
original Grade 9 cohort, due to an increased number of Level 1 responses. Both 
groups showed a small increase in the number of Level 3 responses, and the Grade 
9/11 students also increased their number of Level 2 responses.  
For students with complete data across both years, 43% of Grade 7/9 and 56% of 
Grade 9/11 responded at the same level (0 to 3), whereas 39% of Grade 7/9 and 26% 
of Grade 9/11 improved. One Grade 9 student who had originally written “Too many 
recreational deaths. Not many alcohol related deaths” (2A) gave the following 
Category 0C response two years later: “People wearing a life jacket, in sheltered 
waters in a boat under 6m should always have a life jacket.” A Grade 7 student who 
had originally identified a discrepancy in the graph (3B) later focused only on 
specific aspects of the data, saying “a lot of people die in 1999” (2B). One Grade 7 
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student who initially focused on specific data elements in writing “Not many people 
had life jackets. Tons of people drunk” (1B), identified the error in the graph totals in 
his longitudinal response (3B). A Grade 9 student who gave no response at all in the 
initial survey later engaged in the task with a Category 1B response: “99 results are 
extremely high all of a sudden. Alcohol was the cause for almost half.” 
Code 0  1  2  3   
Sub Code 0A 0B 0C 0D 0E  1A 1B  2A 2B  3A 3B  Total
Grade 7/9 27 1 2 5 6  0 29  50 5  7 5   
 Subtotals 41 (30) 29 (21) 55 (40) 12 (9)  137 
Grade 9/11  7 5 1 3 2  0 7  26 7  3 2   
 Subtotals 18 (28) 7 (11) 33 (52) 6 (10)  64 

Table 5: CSL categories — Longitudinal survey (cf. Table 3) 
Table 6 reports on similar data but for the VAR coding. Again there was some 
improvement over the two-year period, and once more the Grade 7/9 students 
performed better than their earlier Grade 9 counterparts. Most of the change was due 
to increased numbers in Category 1C and Level 2. Responses clearly articulating 
variation across the graphs (Level 3) were still rare; however some of them indicated 
a significant change for some individuals. One Grade 7 student’s response in the first 
survey—“I can’t see anything in them. I don’t know what the 87 to 99 means”—was 
coded low on both CSL and VAR, but the student’s response in the second survey 
recognized that the range is big (Level 3). Another student initially could identify 
particular data elements, and then two years later had a more holistic view, writing “I 
think that the graph ‘Recreational boating deaths’ was fairly inconsistent throughout 
the years and had a sudden jump at the end (99)” (Level 3).
Code 0 1A 1B 1C 2 3 Total 

Grade 7/9  47 (34) 30 (22) 15 (11) 20 (15) 17 (12) 8 (6) 137 
Grade 9/11  23 (36) 10 (16) 2 (3) 14 (22) 11 (17) 4 (6) 64 

Table 6: VAR categories — Longitudinal survey (cf. Table 4) 
For students with complete data across both years, 43% of Grade 7/9 and 44% of 
Grade 9/11 responded at the same level (0 to 3), whereas 45% of Grade 7/9 and 32% 
of Grade 9/11 improved.  There were some who declined quite markedly from the 
first survey to the second. This includes students who recognized variation initially 
but who, in the second survey, focused on single columns (e.g., “In 99 they went up 
but they should have been down because of the new technology and laws”) or 
claimed not to see any “unusual features” at all. Considering both CSL and VAR, no 
student changed from Level 3 on one to Level 3 on the other. Overall, 14% 
performed at Level 3 on at least one (one student did so on both). 

DISCUSSION 
The importance of variation and critical statistical literacy 
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If the task had been more specific—targeting a particular aspect of either variation or 
statistical literacy—larger numbers of students may have given higher level 
responses. It is important to recognize, however, that in articles like that used as a 
basis for the task and in much of the data encountered daily in the real world, the data 
come with no questions at all. Accompanying reports often present the writer’s 
interpretation, which may be biased or incorrect. Moreover, as seen here, the actual 
data as presented come with no guarantees of correctness. Given this, the results of 
this study are of concern, since students appear to lack strategies for searching for the 
“unusual”. They rarely query the data or examine the data in a holistic way. For the 
students in this study, the kind of critical thinking suggested by Gal (2002) and 
explicated as the third step of Watson’s 1997 hierarchy seems to be uncommon. 
For the CSL coding, 40% to 50% of the students could make generally meaningful 
comments about what the graphs were showing or, to a lesser extent, could identify 
technical shortcomings in the graphical presentation. In contrast, a similar number 
either made no comment at all, or could attempt only vague descriptions. As seen in 
Tables 3 and 5, less than 10% of the students appeared to check the data in any way 
for consistency. Presumably the remaining students took the data at face value. 
Performance in relation to the VAR coding was similarly disappointing, with well 
over half of the students in the first survey not considering the variation in the graphs 
as something that might be regarded as unusual. If variation was acknowledged at all, 
in most cases it was because students identified particular values, notably extreme 
values. Students rarely identified—or, at least, commented on—trends or variation in 
data. There seems to be an inability (or unwillingness) to step back from individual 
data points in the graphs to make meaning on a larger scale. Those who commented 
on variation generally gave enough discussion in their response to warrant a Level 2 
classification on the CSL coding, but those few who identified errors (at Level 3 on 
the CSL scale) usually were at only Level 1 on the VAR coding. 
Implications for teachers 
The results suggest that there has been a lack of attention to variation and statistical 
literacy with respect to graphs in the media. It is suspected that students are given 
opportunities to construct graphs based on data, to comment on the technical 
presentation of existing graphs, and to read off values from graphs and tables, but that 
critical evaluation and higher level analysis are rarely explicitly fostered. Examples 
such as the boating deaths graphs used here are not rare in the media, but students 
need activities that help them to focus on whether the data are internally consistent, 
whether there are unusual values, whether there are any trends in the data, and how 
the data vary. Most importantly, they need to make meaning from the data. Teachers 
can model the kinds of questions that students could and should ask when examining 
data. A discussion might proceed along the following teacher-directed sequence, 
depending on students’ intermediate responses. “What story do the graphs tell? … Is 
there anything about them that you consider unusual? … Are there any mistakes in 
the graphs? … How might you tell the story better?” 
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Limitations and directions for future research 
It should be noted that some students may have lacked motivation to respond 
seriously to the task, as indicated by some terse or coarsely expressed responses. The 
authors are also aware that some students may not have been able to express 
themselves clearly or in detail when completing a written survey, especially given its 
length. The use of an interview setting is likely to provide richer data. It would also 
be interesting to use the task with adults, because their experience of real world data 
since leaving school may affect the kinds of things they perceive as unusual. Finally, 
can explicit instruction in looking for the unusual in data help students make this their 
usual approach to examining statistical material? 
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ENVIRONMENTS
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University of Cyprus, Department of Education 

The recent development of powerful new technologies such as dynamic geometry 
softwares (DGS) with drag capability has made possible the continuous variation of 
geometric configurations and allows one to quickly and easily investigate whether 
particular conjectures are true or not. Because of the inductive nature of the DGS, 
the experimental-theoretical gap that exists in the acquisition and justification of 
geometrical knowledge becomes an important pedagogical concern. In this article we 
discuss the implications of the development of this new software for the teaching of 
proof and making proof meaningful to students. We describe how three prospective 
primary school teachers explored problems in geometry and how their constructions 
and conjectures led them “see” proofs in DGS.   

INTRODUCTION
DGS has revitalized the teaching of geometry in many countries and has made 
necessary a radical change to the teaching of proof (de Villiers, 1996).  One of the 
most welcome facilities of dynamic geometry is its potential to encourage students’ 
“research” in geometry. In such a research-type approach, students are inducted into 
theorem acquisition and deductive proof. Specifically, students can experiment 
through different dragging modalities on geometrical objects they construct, and 
consequently infer properties, generalities, or theorems. Because of the inductive 
nature of DGS, the experimental and theoretical gap that exists in the acquisition and 
justification of geometrical knowledge becomes an important pedagogical and 
epistemological issue. In this paper, we discuss the pedagogical aspects of 
introducing DGS into the teaching of geometrical proofs and we provide some 
indications of how DGS can be used to offer insight and understanding of proofs 
through investigation and experimentation.

THEORETICAL FRAMEWORK AND PURPOSE OF THE STUDY 
The Gap Between Proof and Exploration 
The exploration of a problem is by its nature empirical, and, at a first glance, it seems 
that it does not fit into the deductive character of geometrical proofs. When the 
empirical and inductive dimension is to be added to the pedagogical structure that is 
traditionally rooted in deductive logic, one has to combine these two seemingly 
opposite perspectives. The problem of combining inductive exploration with the 
deductive structure of geometrical proofs has been the subject of a number of 
research studies (Mariotti, 2000). The traditional teaching emphasizing that a 
mathematical statement is true if it can be proved, led students distinguish proof from 
exploratory activities. However, de Villiers (1996) and (Hanna, 2000) indicated that 
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in actual mathematical research, mathematicians have to first convince themselves 
that a mathematical statement is true and then move to a formal proof. It is the 
conviction that something is true that drives us to seek a proof. In DGS, students can 
easily be convinced of the general validity of a conjecture by seeing its truth 
displayed on the screen while geometrical objects undergo continuous 
transformations (de Villiers, 1996, 2003).  
A number of researchers showed that the passage from “exploratory” geometry to the 
deductive geometry is neither simple nor spontaneous. Hoyles and Healy (1999) 
indicated that exploration of geometrical concepts in a DGS environment could 
motivate students to explain their empirical conjectures using formal proof. They 
found that DGS helped students to define and identify geometrical properties and the 
dependencies between them, but when students worked on proofs, they abandoned 
the computer constructions.  The latter leads to the argument that DGS may be useful 
only in helping students understand problems in geometry but it does not contribute 
to the development of their abilities in proofs, reinforcing the idea that there exists a 
gap between dynamic geometry and proof. This may also be the reason that some 
educators and researchers expressed their concerns and worries that DGS could lead 
to the “further dilution of the role of proof in the high school geometry” (Chazan, 
1993, p. 359). However, the main discussion of recent research, and the main purpose 
of the present study were to find out ways of effectively utilized DGS to introduce 
proof as a meaningful activity to students. This can be achieved by reconceptualizing 
the functions of proofs. 
The Functions of Proof 
Proof performs a wide range of functions in mathematical practice, which are 
reflected to some extent in the mathematics curricula. The NCTM Standards (2000) 
emphasized in a special section on reasoning and proof, the investigations, 
conjectures, evaluation of arguments and the use of various methods of proofs. From 
NCTM’s document it is assumed that proof is not only understood in the traditional 
rigid and absolute way, but it also embraces many other functions. Hanna (2000), 
based on recent research on proof, provided a list of the functions of proof and 
proving: verification, explanation, systematization, discovery, communication, 
construction, exploration, and incorporation. She also considered verification and 
explanation as the fundamental functions of proofs, because they comprise the 
product of the long historical development of mathematical thought. Verification 
refers to the truth of a statement while explanation provides insight into why this 
statement is true. 
Traditionally, the function of proof has been seen almost exclusively in terms of the 
verification of the correctness of mathematical statement. The idea is that proof is 
used mainly to remove either personal doubt and/or those of others; an idea which 
has one-sidely dominated teaching practice and most of the research on the teaching 
of proof. However, de Villiers (2003) proposed other important functions such as 
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explanation, discovery, intellectual challenge and systematization, which in some 
situations are of greater importance to mathematicians than that of mere verification.
Edwards (1997) defined the term “conceptual territory before proof” by indicating 
that conjecturing, verification, exploration and explanation constitute the necessary 
elements that precede formal proofs. The conceptual territory provides the arena for 
the construction of intuitive ideas that may subsequently be tested and confirmed 
through formal methods, and it is the basis for a richer understanding of a proof. This 
approach reflects the “quasi-empirical” view of mathematics in which understanding 
proceeds from students’ own conjectures and verifications to formal proofs (Chazan, 
1993). Simpson (1995) differentiated between “proof through logic”, which 
emphasized the deductive nature of proof, and “proof through reasoning”, which 
involved most of the functions of proofs as were listed by Hanna (2000). Proof 
through reasoning is accessible to a greater proportion of students, because it is closer 
to the learning style of students, it makes mathematics more useful and enjoyable, 
and it reflects the quasi-empirical view of mathematics and the process adopted by 
mathematicians when they invent mathematics (Simpson, 1995).    

The functions of proofs and DGS 
   The availability in the classroom of DGS gave a new impetus on the teaching of 
geometry based on students’ investigations and explorations. This does not mean that 
proof is replaced by explorations. On the contrary, exploration is not inconsistent 
with the view of mathematics as an analytic science or with the central role of proof.  
Polya (1957) emphasized the connection between deductive reasoning with 
exploration. He pointed out that solving a problem amounts to finding the connection 
between the data and the unknown, and to do it, one must use a kind of reasoning 
based on deduction.  In the DGS environment students acquire understanding through 
verifying their conjectures and in turn this understanding solicits further curiosity to 
explain why a particular result is true.  Students working in the DGS environment are 
able to produce numerous corresponding configurations easily and rapidly, and 
thereby they have no need for further conviction/verification (Holzl, 2001). Although 
students may exhibit no further need for conviction in such situations, it is important 
for teachers to challenge them by asking why they think a particular result is true (De 
Villiers, 2003, 1996). Students quickly admit that inductive verification merely 
confirms and the “why” questions urge them to view deductive arguments as an 
attempt for explanation, rather than verification (Holzl, 2001). Thus, the challenge of 
educators is to convey clearly to the students the interplay of deduction and 
experimentation and the relationship between mathematics and the real world 
(Hanna, 2000).
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THE STUDY 
This article presents an account of the thinking exhibited by three prospective 
primary school teachers while attempting to answer proof problems. It is conjectured 
that DGS provides an appropriate context where the significance of proof may be un-
forcefully recognized. To this end, the development of “appropriate” tasks was 
necessary. By “appropriate” we mean tasks where proof may be providing insight-
illumination into why a result, which can be seen on the screen, is true. Open-ended 
problems seemed as more “appropriate” for two main reasons: (a) statements are 
short and do not suggest any particular solution methods, and (b) questions are 
different from traditional closed expressions such as “prove that …”, which present 
students with an already established result (Jones, 2000). Open-ended problems give 
students the opportunity to engage in a process, which utilizes a whole range of proof 
functions: exploring a situation, making conjectures, validating conjectures and 
proving them. The implicit assumption is that during this process students will not 
have to prove something that they are presented with and do not understand, but 
something that they have discovered, validated and is meaningful to them. The 
participants in this study have been asked to work on the following open-ended 
problem suggested by de Villiers (1996): 
Problem: Construct a kite and connect the midpoints of the adjacent sides to form an 
inscribed quadrilateral. What do you observe in regard to this inscribed quadrilateral? 
Write down your conjecture. Can you explain why your conjecture is true? Change 
your kite into a concave kite. Does your conjecture still hold?
After the exploration of this problem, students were engaged in proving similar 
geometrical theorems. The aim of these additional problems was for students to 
utilize the proving process in systematizing and generalizing their results. 
Students’ Proofs 
Three prospective primary school teachers with prior experience in dynamic 
geometry participated in this study. These students had attended a course on the 
integration of computers in elementary school mathematics, and thus they had a basic 
understanding of Sketchpad’s drawing, menus, and construction features.  
Interviewees participated on a voluntary basis and were interviewed while working 
on the problem. The interviews were conducted in the mathematics laboratory 
equipped with computers loaded with the Greek version of the Geometer’s 
Sketchpad. The setting was informal with students being able to analyze and build 
geometric constructions that they thought would help them solve the problems 
without any time constrains being set. Unstructured interviews were used to collect 
the data.
In the following, we analyze students’ strategies and try to underline the different 
aspects and functions of proof. The discussion of students’ solutions to both problems 
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is organized around three phases: (a) the phase before proof, (b) the proof phase, and 
(c) the phase of intellectual challenge of extending proof to similar problems.  
The phase before proof 
At this phase students explored the problem through constructing the kite and 
rearranging the constructed figure by dragging it in different directions. This 
exploration led students to form their own conjectures about the solution of the 
problem by visualizing the transformations that resulted by the dragging facilities of 
the software.
Figure 1 shows the way in which students constructed the kite and consequently the 
inscribed quadrilateral. Two of the students constructed the kite using the property of 
perpendicularity of its diagonals (see Figure 1a), while the third one used the property 
of equal adjacent sides by firstly constructing a triangle and then reflecting it on one 
of its sides (see Figure 1b). All students managed to find the midpoints of the 
adjacent sides and connected them with line segments using the appropriate functions 
provided by the software. They conjectured that the inscribed quadrilateral might be a 
rectangle and confirmed their conjecture by dragging the vertices of the kite to new 
positions. Students also realized that their conjectures hold also in the case of the 
concave kites. All the students evaluated their mathematical conjectures not only 
visually but also numerically by measuring the sides and angles of the inscribed 
quadrilateral, confirming that it was a rectangle, and thus verified their conjecture. It 
is also important to note that these students used the measuring tools for slope to 
show that the opposite sides of the inscribed shape were parallel. Furthermore, they 
noticed that the diagonals of the kite were also parallel to the sides of the inscribed 
shape.

                Figure 1a                 Figure 1b 
Figure 1: The construction of kite 
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The proof phase 
The exploration of the problem as it was done in the “phase before proof” led 
students to become convinced about the validity of their conjecture. This conviction 
was achieved solely by the use of the dynamic geometry environment. During the 
“proof phase” the role of proof is not to convince or remove individual or social 
doubt about a proposition but primarily to find ways to explain why a certain result 
that can be seen on the screen is true (Jones, 2000). One of the students in this study 
showed no further need for conviction that the inscribed quadrilateral was a 
rectangle, while the other two students felt the need to explain why they thought this 
particular result was true. These two students admitted that the inductive verification 
they provided for the mathematical statement was not satisfactory in the sense that 
the inductive process was not a consequence of other familiar results. Furthermore, 
they proceeded to view a deductive argument as an attempt for explanation, rather 
than for verification.
At this phase, the DGS enabled students to pass from “exploratory” geometry to 
deductive geometry, bridging in this way the gap between dynamic geometry and 
proof. Specifically, the two students, who successfully solved the problem, based on 
the measurements they made earlier on in the exploration phase (the pre-proof 
phase), defined and identified the geometrical properties and the dependencies 
between them, and provided a deductive proof of the problem. In fact, they realized 
from their measurements that EF, and HG are equal to ½ AC (see Figure 2). This 
directed them in what they needed to look for in their geometry books, where they 
found the respective theorem. Based on this property they showed that EF is equal 
and parallel to HG as well as EH is equal and parallel to FG, and therefore EFGH is a 
parallelogram. The next step was to prove that the parallelogram was a rectangle, i.e., 
one at least of the angles of the parallelogram was a right angle. Based on the 
property of the perpendicularity of the diagonals of the kite, students observed that 
since BD  AC, then EF  EH, which implies that EFGH is a rectangle. (The 
dragging facility of the software enabled students to conceive that their explanations 
hold even in the case of concave kites).  
The phase of intellectual challenge of extending proof to similar problems 
In this phase we discussed two categories of problems: (a) problems that have a 
similar context to the kite problem, and (b) problems that require the same type of 
reasoning. The purpose of the problems in the first category was to help students 
generalize their finding from the kite problem to quadrilaterals of various types. To 
this end, the three students tried to systematize their experimentations by 
investigating first the more familiar quadrilaterals such as parallelograms, rectangles, 
rhombuses, squares, rectangles and then they proved, using the same explanations as 
they did in the kite problem, that in any quadrilateral the shape resulting from the 
midpoints of its sides is always a parallelogram. The purpose of the second category 
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of problems was to ensure that students could easily transfer the proving process to 
problems with different structure.  

Figure 2: The proof that the inscribed quadrilateral is rectangle 

CONCLUSIONS
In this paper we tried to show some of the ways in which DGS can provide not only 
data to confirm or reject a conjecture, but ideas that can lead to a proof. To this end, 
the results of the study were presented in three phases: the phase preceding proof, the 
proof phase, and the phase of intellectual challenge of extending proof to similar 
problems.   
The phase preceding proof is quite necessary for students to understand the problem 
based on their own intellectual efforts. In the kite problem students encompassed 
their informal reasoning and argumentation that came into play when students 
worked from their own investigations (Edwards, 1997). To construct the kite, which 
was a challenge by itself, students first investigated its properties and then tried to 
apply them on the computer screen. The graphing and validating capabilities of DGS 
enabled students to explore the problem and make mathematical conjectures. In turn, 
students checked specific cases of kites, using the dragging facility of the software, to 
see if their conjecture holds true, i.e., the shape formed by connecting the midpoints 
of adjacent sides of a kite is always a parallelogram. In other words, the phase 
preceding proof helped students to build up empirical evidence for the plausibility of 
their conjectures.
A number of research studies indicated that engaging students in the phase preceding 
proof did not necessarily lead them to an awareness of the need for proof (Chazan, 
1993; Edwards, 1997). On the contrary, in the present study, we found that DGS and 
appropriate questions prompted or motivated students to seek justifications for their 
conjectures. Two of the three students in this study justified their conjectures for the 
kite problem based on the screen outputs. In addition, students in the study did not 
support that their experiments and measurements were sufficient to support a 
geometrical statement. Measurements functioned as a means for finding explanations 
and a means for gathering information for justifying their results. The relations 
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between the measurements in conjunction with the invariant properties of the shapes 
functioned as students’ hints into explaining their conjectures. Measurements also 
provided students with specific examples that formed the ground for further 
conjectures and generalizations. It is in this area that the computer contributed to 
students’ attempts toward proof and bridging the gap between inductive explorations 
and deductive reasoning. This became more apparent during the phase of intellectual 
challenge of extending proof to similar problems. During the last phase, which was 
not adequately presented due to space limitations, students felt a strong desire for 
explaining their conjectures and understanding how one conclusion is a consequence 
of other familiar ideas, results or theorems. Students found it quite satisfactory to 
view a deductive argument as an attempt for explanation rather than for verification 
(de Villiers, 2003).
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ESTABLISHING A PROESSIONAL LEARNING COMMUNITY  
AMONG MIDDLE SCHOOL MATHEMATICS TEACHERS  

Karen Koellner-Clark and Hilda Borko 
University of Colorado at Boulder 

The paper examines how community was established in a professional development 
institute that focused on algebra content knowledge for middle school mathematics 
teachers. This qualitative study was framed within a situative perspective.  We 
analyzed multiple data sources to identify the ways in which community was 
established. Results indicate that giving tasks that provided access to all participants 
on the first day allowed active participation from all participants and characteristics 
of community emerged. Characteristics that were evidenced in triangulated data 
indicate that explaining and clarifying ideas, building off of others’ ideas, admitting 
weaknesses, giving praise to others, and laughing were indicators that community 
was being established. 
BACKGROUND AND FOCUS STATEMENT 
Professional development models are receiving renewed attention in mathematics 
education. Researchers are examining a variety of methods to identify characteristics 
of models that provide promise for improving classroom teaching and student 
achievement. Research suggests that one feature of successful professional 
development models is the ability to create community (Cobb, McClain, Lamberg, 
and Dean, 2003; Franke & Kazemi, 2001; Grossman, Wineburg, & Woolworth, 
2001; Stein, Silver, & Smith, 1998).  
Learning within a community of teachers is a simple idea yet establishing a 
successful community that results in teacher change and student achievement is a 
complex endeavor. First and foremost, the teachers need to share in the commitment 
to intellectual development and refinements in practice (Elmore, Peterson, & 
McCartney, 1996). Other features of professional development programs that support 
community development include: creating a safe environment for teachers to grapple 
with difficult content and pedagogical issues, developing sustained relationships 
among teachers in the community, encouraging participants to listen carefully to each 
others ideas and perspectives, equally distributing social and intellectual work within 
the community, and fostering a commitment to helping others within the group learn 
and develop both intellectually and in their teaching practice (Wenger, 1996; 
Grossman, Wineburg, & Woolworth, 2001.) 

The most developed models of teacher community within professional development 
programs originated in elementary school mathematics (Carpenter, Fennema, & 
Franke, 1996; Schifter, 1996; Franke & Kazemi, 2001). These models of professional 
development focus on in-depth understanding of the elementary curriculum from a 
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student thinking and learning perspective. At the heart of these models is the 
assumption that teachers teach concepts that they themselves have not mastered. 
Teacher learning is defined as understanding elementary mathematical concepts and 
curriculum. Elementary teachers often do not possess extensive mathematical 
knowledge, and one of the reasons for community is to mitigate teachers’ negative 
affect around difficult subject matter (Schifter, 1996). Teaching communities within 
professional development models differ between grade level and subject matter 
(Grossman, Wineburg, & Woolworth, 2001). There is a difference between 
professional development communities in the elementary school in that elementary 
school teachers are not expected to be subject area experts whereas in high school 
communities many teachers have degrees in mathematics and sometimes advanced 
degrees. However, professional development communities in the middle school are 
unique in that that they are made up of high school licensed teachers as well as 
elementary school licensed teachers. A middle school mathematics community makes 
a unique community in that it adds different strengths and weaknesses to the 
professional development. This paper describes how community evolved within a 
summer institute for middle school teachers on conceptualizing algebra.

THEORETICAL FRAMEWORK 

We drew upon a situative perspective to design both the professional development 
institute and the research investigation (Greeno, Collins, & Resnick, 1996; Putnam & 
Borko, 2000). From the situative perspective, a critical aspect of professional 
development is the development of community. We draw on the work of Lave, 
Wenger, and Grossman, Wineburg, & Woolworth to define community. Lave (1996) 
defines community of practice as relations across people, and activity over time and 
in relation with other communities of practice. Grossman, Wineburg, and Woolworth 
capture the notion of professional teacher community by indicating necessary speech 
and action enacted within the group. A professional teacher community is 
characterized by: [or “develops through” 1) the formation of group identity and 
norms of interaction, 2) the navigation of differences among group members, 3) 
negotiating the essential tensions between the goals of improving professional 
practice and fostering intellectual development, and 4) communal responsibility for 
individual growth. (Grossman, Wineburg, & Woolworth, 2001).  Fundamental 
indicators of learning within the situative perspective are identifying changes in 
participation in the social practices of a community (Greeno, 2003; Lave, 1996). 
Therefore, professional development created with community as a central 
characteristic create an environment that considers participation, social negotiation, 
and collective learning. Social negotiation including the regulation of social 
interactions and group norms is an ongoing practice. Originally a few key individuals 
may do most of this regulation however roles in leadership will shift overtime.  
From the situative perspective, the evolution of teacher professional development 
communities can be documented by observations of changes in leadership and shifts 
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in participation (Rogoff, 1997). Indicators of group equity and maturation can be 
identified by the degree to which discussion brokering is distributed among 
individuals and the degree to which it is shared rather than monopolized by one or 
two people. Members of the teacher community must believe in the right to express 
themselves honestly without fear of censure (Grossman, Wineburg, & Woolworth, 
2001).  Documenting how this evolution takes place is different from professional 
development to professional development. Yet, as members transform their role 
within the community the person they are becoming crucially and fundamentally 
shapes what they know (Lave, 1996, p. 157) and indicators of growth can be 
identified. Genuine communities make demands on their members as membership 
comes with responsibilities. These demands can also be outlined as markers of 
maturation. More specifically, in a teacher community-a core responsibility is to help 
other teachers learn by encouraging them to contribute to large group discussion, 
pressing others to clarify their thoughts, eliciting the ideas of others, and providing 
resources for others’ learning.
METHOD
The Professional Development Institute
The summer algebra course was part of the “Supporting the Transition from 
Arithmetic to Algebraic Reasoning” (STAAR) project. STAAR is an NSF-funded, 5-
year project, conducted collaboratively between 3 major universities. The aims of the 
project are to study algebra teaching and learning at the middle school level, focusing 
both on students and teachers. The general scope of the summer algebra course was 
jointly developed by members of the STAAR team and based on two years work 
from three tiers of the project. The course was grounded in emerging theories about 
how students develop algebraic reasoning identified by Tier 1, how teachers teach 
algebraic concepts identified by Tier 2 and the professional development described 
here was to help teachers foster the transition from arithmetic to algebra designed by 
Tier 3.  There was a general consensus among the team that middle school teachers 
might benefit from extended learning opportunities centered upon the teaching of 
algebraic reasoning. The two-week STAAR summer algebra course was held in July 
2003 at a university campus setting. The three-credit graduate level course was 
offered through the Continuing Education program in the University’s School of 
Education.  According to Putnam & Borko (2000), such a setting appears to be 
“particularly powerful… for teachers to develop new relationships to subject matter 
and new insights about individual students’ learning” (pg. 7).  
Course Goals
Increasing teachers’ content knowledge was the central goal of the course. The aim 
was to challenge teachers’ own content knowledge as they engaged in rich 
explorations of many of the algebraic concepts that they are likely to teach in their 
own classrooms. Creating a teacher community or network was another goal of the 
summer course. Developing a sense of community among the teachers in the course 
was deemed very important.  The course encouraged teachers to work together by 
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seating teachers in small groups, assigning mathematical problems and encouraging 
teachers to work on them together.  
A third goal was to have teachers experience learning in a classroom based on 
“reform” ideals. A fourth goal was to increase teachers’ awareness of students’ 
algebraic thinking by examining student work, discussing student thinking, and 
reading current literature. A fifth goal was to influence teachers’ beliefs about algebra 
and pedagogy. In particular, the course was designed to help participating teachers 
see the value in developing algebraic reasoning skills through problem solving, group 
work, sharing a variety of solution methods, etc. This presentation focuses on the 
second goal, tracing how the professional teaching community evolved within the 
algebra summer course.
Participants
Sixteen mathematics teachers participated in the course.  They were all inservice 
teachers from a variety of school districts in the state, mostly teaching at the middle 
school level.  Although there was a range of experience among the teachers in the 
class (from 0-15 years), the majority had relatively little experience teaching middle 
school algebra. The course was team taught by two mathematics educators. One of 
the instructors had mathematics teaching experience at the middle school level while 
the other taught at the secondary level. Both also had experience teaching university 
courses and mathematics professional development courses. 
Data Collection 
An extensive set of data were collected both to describe the teaching and learning that 
occurred within the context of the summer course, and to track changes in the 
participants’ knowledge and beliefs.  Two video cameras were used throughout the 
course to document the activities of the instructors and the students.  During whole-
class activities, one camera was focused on the instructor(s) and the other on the 
students. When students worked in small groups, the cameras were trained on 
separate groups of students. In addition, extensive daily notes were kept by several 
members of the research team. Multiple measures were used to assess teachers’ 
mathematical abilities and beliefs before and after the course.  These measures 
included written mathematics assessments, face-to-face (or telephone) interviews 
about their beliefs regarding algebra teaching and learning, and a written statement 
about their mathematics experiences. The participants also kept extensive 
documentation of their work and reflections during the course. The course instructors 
were interviewed on a daily basis about their reflections on the class sessions.  They 
also kept records of all instructional plans, handouts, and assignments.  
The conversations that occurred throughout the professional development course, 
captured on videotape, are a main source of data to document how community 
evolved. In addition, field notes, interviews with both of the instructors and teachers, 
teacher daily reflections and instructor interviews provide important data for 
triangulation, confirming and disconfirming evidence. If a group grows toward 
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community you should be able to hear it and see it in the venues (PD, online) in 
which they met. Claims should be supported by evidence from the interactions of the 
members.  
Analysis
The coding framework implemented in this study uses two categories of codes. The 
first category includes 13 high inference analytic codes, for which the unit of analysis 
was whole discourse events. The second category includes 14 low inference analytic 
codes; which are applied to smaller chunks of data examined line by line (See Table 
1.). As an initial step in data analysis, one researcher viewed the entire set of video 
recordings, created a chronological record of activities within the professional 
development institute along with a brief summary of each activity.  At the same time, 
she identified activities during which issues related to the evolution of community 
were particularly evident. A second researcher analyzed these sections using the 
coding framework.  A third researcher went through the data sets to achieve inter 
rater reliability in the coding of the data. Interrater reliability was accepted data was 
coded with 90% agreement. When coding of data was complete, researchers went 
through the data set and clustered codes. Themes were determined from the clustered 
data set. Again we went through the data set to find confirming and disconfirming 
evidence using triangulated data for the themes that emerged.

Code High Inference  Code Low Inference

TR Sharing specific tools, 
representations, and artifacts

SW Sharing a weakness or 
misunderstanding

SS Shared stories, inside jokes, 
laughter-

SP Sharing ideas and ways of 
thinking

RT Reoccurring themes in language 
or in solving problems

CI Challenging each others ideas

IC Participants performed both 
individually and collectively to 

make sense of problems

CT Instructor(s) gave tasks that 
required cooperative skills

Table 1: Sample of Select Analytic codes 
RESULTS AND CONCLUSIONS 
Preliminary results suggest the following themes emerged from the data set that help 
to characterize the evolution of community within the summer algebra institute. First, 
the grouping of participants was a planned strategy for community building. 
Instructors specifically grouped participants by personality to stimulate community 
development over the course of the institute. For example, the instructors’ goals were 
to place participants that did not have prior experiences with each other together so 
that students made new relationships on the first day. These decisions were based on 
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prior relationships with the participants and knowledge from institute interviews 
(Instructor Interview Day 1, July, 2003).  
Second, it appeared that using tasks that provided access to all participants was 
important in the co-involvement of the whole group as they solved problems. 
Problems used on the first day appeared to be puzzle like tasks with multiple levels of 
access. All participants could solve the “sidewalk problem.” This task had students 
cut a rectangular section of a sidewalk and find the minimum and maximum pieces 
that could be made. All participants could make representations of the different 
problems involved. Conversations focused around finding the minimum and 
maximum in which all group members participated, generalizing results, and writing 
algebraic expressions to represent the problem. This problem led participants to 
clarify and explain what they knew and did not know, be persistence in problem 
solving, admit when they did not understand the thinking or the content that others 
used, giving praise, and laughing. The sidewalk problem is a series of problems that 
was used most of the first day. The students worked in small groups where they 
individually solved the problem as well as collaboratively. Intermittently they would 
share parts with the whole class before they moved forward. Data analysis indicates 
that clarifying and explaining, building off of each others ideas, persistence, 
admitting weaknesses and laughing together were all characteristics that appear to be 
the ways in which community initially began to evolve.  The following excerpt 
provides an example of one group presenting their results near the end of the day.  
[Ken, the reporter, gets up to come to the overhead Mary, Mindy, and Allen get up as well.] 

Mary:  This is a team effort. 

Allen:  you might need us. 

Kris:  You guys don’t have to come up. 

Mary:  Cover that part [of the overhead] up. 

Ken:  You have seen this before maybe [showing a table they made to represent the 
problem]. We started with the number of  lines, then the minimum number, and the 
maximum number.  

 [agreement from teammates] 

Ken: [jokingly asks] Can I go on? [directed to his teammates responses] 

Mia: This was Ken’s idea [pointing to the next column on the chart] before lunch. He 
noticed that something was going on with the number of intersections. Like how many 
intersections did you have and the resulting number of pieces. 

Allen:  This is kind of going off of what the last group introduced that the intersections had 
to increase by 1, 2, 3, etc. This was the actual  number of intersections so these should line 
up.

Mary: [goes to the screen of the overhead] So this would be the 1, 2, 3, 4, as she points to 
different intersections that were aligned with the previous groups chart. But also, Mia and I 
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were like these numbers look familiar and Mia remembered they were all triangular 
numbers and I was like whatever but after she showed me why I was okay I get it.  

Ken:  This brings up for those of us who paid attention during high school math. [sarcastic 
saying he did not know triangular numbers previously.] [lots of laughing and references 
made to other summer content courses.] Oh yeah! Pascal’s Triangle! Who is Pascal? I 
thought that was a chip.

Mary: [nodding her head in agreement] 

Ken: And then they came up with this thing which is really pretty awesome if you notice 
these numbers [circles 1, 6, 10, 15] if you look at the number of intersections you will 
notice they are the same. 

Mary: Allen tell them what you came up with at this point. 

Allen: The column over here is exactly what the last group said this is where it increases 
over 1,2,3,4,5,6,-then the next column is the number of intersections so that is where it 
increases and where this formula came in [pointing to the overhead and explaining the 
similarities] We tried to figure out how to get from these numbers [number of intersections] 
to the maximum. 

Ken: So we came up with n is the number of lines which is how we all did it. Then n + 1 is 
the minimum-most of us came up with that. Then we took that [(n + 1)/2] + 1 would be the 
maximum which is basically what you can do with the triangles somehow.  

Mary:  Yeah. 

Allen:  It is the intersections and you are adding to.. 

Ken: It’s still a little foggy to me…

This excerpt provides a window into the first day of the algebra institute. You heard 
participants explaining and clarifying their ideas, building off of the previous group’s 
presentation, admitted weakness, giving praise, and laughing and having a good time. 
On the second day, the tasks that the instructors gave and the pedagogical focus 
encouraged participants to establish and gain deeper trust in the relationships with 
first a partner and then the other participants as they grappled with their own content 
knowledge including understandings, misunderstandings, and the intricate underlying 
relationships between the conceptual ideas of algebra. This led to in-depth dialogues 
among participants in which characteristics such as clarifying mathematical ideas, 
making sense of multiple solution strategies, struggling with a difficult problem, and 
sharing of weakness or misunderstandings were identified more often. Each of these 
characteristics emerged as themes to help explain how community was established in 
the professional development institute. This work adds to the literature base on 
effective ways to establish community within professional development.
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This paper first postulates the existence of co-constructed patterns of participation in 
the classroom and then documents one such pattern of participation: Kikan-shido 
(instruction between desks), both as it is enacted and as it is perceived by the classroom 
participants. In the course of detailing the use of kikan-shido in three Australian 
classrooms, this paper addresses the relationship between practice, participation and 
learning, as exemplified by kikan-shido as a locally-enacted pattern of participation to 
which teacher and students subscribe and which teacher and student have agency to 
exploit and to shape, and in which teacher and students, are complicit (co-
conspirators). Acceptance of this point has implications for the research designs by 
which we study the activities occurring in classroom settings. 

INTRODUCTION

Eugene Ionescu is reputed to have said, “Only the ephemeral is of lasting value.” Social 
interactions are nothing if not ephemeral and, since it is through social interaction that 
we experience the world, the understanding of social interactions must underlie any 
attempts to improve the human condition. Our difficulties in characterizing social 
interactions for the purpose of theory building are compounded by the fluid and 
transient nature of the phenomena we seek to describe. Attempts to categorise social 
behaviour run the risk of sacrificing the dynamism, contextual-dependence and 
variation that constitute their essential attributes. This poses a challenge both for 
methodology and for theory. The ephemeral nature of social interactions is something 
that must be honoured in the methodology but transcended in the analysis. 

The juxtaposition, in this paper, of participation, position, role and practice reflects a 
perceived gradation in the constructs that might be used to model the fluidity of social 
interaction. Where role is taken to have an institutionalised status and to constitute a 
more lasting categorization (eg teacher or pupil), while position is a social artefact 
constructed through the interactions of a social group smaller than an institution and 
less enduring in its membership (eg leader or expert). Participation is the social 
mechanism whereby both positions and roles are enacted and the patterns of 
participation that provide the focus for this paper are the regularities of practice
engaged in by a social conglomerate – in this case, a teacher and her/his pupils. 

Practice also requires explication. Greeno observed that “Methods of instruction are 
not only instruments for acquiring skills; they also are practices in which students learn 
to participate” (Greeno, 1997, p. 9). With regard to the learning of mathematics, some 
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classroom practices will resemble those of other communities who habitually make use 
of skills specific to mathematics (the mathematical activities of accountants or 
surveyors, for example), and some practices will be classroom-specific in the sense of 
relating to the process of learning (providing particular forms of explanation, asking 
particular types of questions when in doubt, seeking and offering assistance, and so on). 
Greeno also made reference to “patterns of participation” developed by students 
(Greeno, 1997, p. 9). This is a particularly apt phrase, combining the fluidity of 
participation in a social setting with the implicit regularity of a pattern. If we are to 
understand what occurs in social settings, it is the patterns of participation that are 
likely to offer insight. As will be argued, in considering social interactions in the 
classroom, the teacher must be considered co-participant with the students in any 
practices of the classroom community. 

In this paper, the notion is posited of an individual having constructed a body of 
practice in which s/he engages regularly and with some consistency, but which is 
subject to refinement, modification, rejection, and replacement over time. The practice 
of individuals (a teacher’s practice or a learner’s practice) is distinguished from 
‘professional practice’ in the sense of established ‘legal practice’ or ‘medical practice.’ 
Such individual practice will be a subset of the practices of the various communities of 
which each individual has membership and will conform to the affordances and 
constraints of the settings and situations in which those individuals find themselves. 

Like Wenger (1998), this analysis of patterns of participation in classroom settings 
stresses the multiplicity and overlapping character of communities of practice and the 
role of the individual in contributing to the practice of a community (the class). Clarke 
(2001) has discussed the acts of interpretive affiliation, whereby the learners align 
themselves with various communities of practice and construct their participation and 
ultimately their practice through a customizing process in which their inclinations and 
capabilities are expressed within the constraints and affordances of the social situation 
and the overlapping communities that compete for the learner’s allegiance and 
participation. By examining classroom practice over sequences of ten lessons, the 
Learner’s Perspective Study (website: http://www.edfac.unimelb.edu.au/DSME/lps/
and outlined below) provides data on the teacher’s and learners’ participation in the co-
construction of the possible forms of participation through which classroom practice is 
constituted (cf. Brousseau, 1986). 

But co-construction of practice and joint participation in practice do not connote 
commonality of purpose among the participants in that (classroom) practice. To some 
extent both teacher and student share a common interest in advancing the student’s 
learning, but they are not positioned identically within that purpose (cf. Davies & 
Harré, 1991), and their classroom participation will both confirm these positionings and 
co-construct them. 
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METHODOLOGY 

This paper reports the analysis of data from sequences of lessons, supplemented by 
post-lesson video-stimulated interviews, and uses one particular whole class pattern of 
participation (kikan-shido or instruction-between-desks) to illustrate differences 
between the function of practice, role and position in the context of eighth-grade 
mathematics classrooms. Data collection was undertaken consistent with the 
‘complementary accounts’ approach discussed in detail elsewhere (Clarke, 1998 and 
2001). In the Learner’s Perspective Study (LPS), three video cameras documented 
teacher and learner actions for sequences of at least ten consecutive lessons and this 
video record is supplemented by post-lesson reconstructive video-stimulated interviews 
with teacher and students, together with test and questionnaire data and copies of 
written material produced in class and interview. 

We need to acknowledge the multiple potential meanings of the situations we are studying 
by deliberately giving voice to many of these meanings through accounts both from 
participants and from a variety of “readers” of those situations. The implementation of this 
approach requires the rejection of consensus and convergence as options for the synthesis 
of these accounts, and instead accords the accounts “complementary” status, subject to the 
requirement that they be consistent with the data from which they are derived, but not 
necessarily consistent with each other, since no object or situation, when viewed from 
different perspectives, necessarily appears the same (Clarke, 2001, p. 1). 

Our goal in the analysis of the classroom events documented in the Learner’s 
Perspective Study is the identification of pattern within the complex, interconnected 
database. As will be argued, the analysis undertaken in this paper must not only identify 
a ‘pattern of participation’ within the data, but also demonstrate that the participants 
themselves gave tacit (or explicit) recognition to that pattern, by verbal reference in 
interview or classroom utterance, or through their active participation in conforming to 
the pattern or even contributing to its construction. 

THEORETICAL POSITIONING 

Previous research, and much of our theorising, has tended to dichotomise teaching and 
learning as discrete activities sharing a common context. It has been argued that this 
dichotomisation is a particularly insidious consequence of the constraints that language 
(and the English language, in particular) imposes on our theorizing (Clarke, 2001). It is 
a major premise of this paper (and the project of which it is one product) that such 
dichotomisation misrepresents both teaching and learning and the classroom settings in 
which these most frequently occur. 

The theory of learning on which this paper is grounded is one that starts from the social 
situation of the individual in interaction with others, but which accords a significant 
role to the individual’s interpretive activity. Particular significance is attached to social 
interaction, and learning proceeds by the iterative refinement of intersubjective 
understandings that include social and content-specific (in this instance, mathematical) 
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meanings, as well as values and modes of collaborative practice. These understandings 
are enacted as the progressive increase in valued practice, including the appropriate 
utilisation of technical language. This account of learning invokes a negotiative process 
that presumes interaction with others. These interactions are predicated on an 
interpretive affiliation that situates the learner with respect to the values and goals of 
others in the learning environment (the classroom) and an interpretive characterisation 
of the other, by which the capabilities, motivations, values and actions of other 
participants in the classroom are inferred and this characterisation is then iteratively 
refined through on-going social interaction. Context is also a matter of interpretation 
and internalization (see Clarke & Helme, 1998). Essential to an understanding of the 
nature of social activity in classrooms is the co-constructed nature of the practices of 
these classrooms, and the role of negotiation not as a subordinate activity through
which classroom practice is constructed but as an essential activity from which 
classroom practice is constituted. 

This paper provides evidence of the mutuality of teaching and learning and supports 
their interpretation as components of a single body of communally constituted practice. 
We are assisted in this argument by Harré’s work on social positioning (Davies & 
Harré, 1991) as this gives recognition to the mutuality of social practice, where the 
positioning of an individual carries both rights and responsibilities and is only sustained 
by mutual compliance. Of course, a position can be contested and negotiation is a 
constitutive element of classroom practice (see Clarke, 2001).

Lave and Wenger provide a plausible connection between practice and learning, in 
which the learning is constituted as participation in practice and the mediating 
mechanism is the situated negotiation of meaning: “Participation is always based on 
situated negotiation and renegotiation of meaning in the world” (Lave & Wenger, 1991, 
p. 52). In this view, participation is not the medium by which learning is afforded, it is 
the thing itself. As such, patterns of participation take on a heightened significance as 
established forms of practice. Legitimate participation in institutionalised practice is 
taken to signify learning or the acquisition of knowledge. My focus in this paper is on 
those patterns of participation that stand in the same regard to the practices of the 
disciplines of science or economics as the classroom does to the research laboratory or 
the stock exchange.

KIKAN-SHIDO (INSTRUCTION BETWEEN DESKS) 

Japanese teachers possess an extensive vocabulary with which to describe their 
practice. Among the myriad terms available to them is the term ‘kikan-shido,’ which 
means ‘instruction-between-desks’ in which, while the students are engaged in 
“practice”, either individually or in groups, the teacher walks around the classroom, 
observing students at work, and may or may not speak or otherwise interact with the 
students. This activity is a familiar one to teachers in American and Australian 
classrooms, and to teachers in many other countries as well. As the translation 
(Instruction Between Desks) makes clear, the Japanese term for this activity focuses on 
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describing the teacher’s actions. If I were to use the English translation as the label for 
this pattern of participation, I would be maintaining the focus on the teacher’s activity, 
whereas the whole purpose of my argument is to demonstrate the mutuality of teacher 
and student participation in this activity. So, for the purposes of this discussion, I will 
use the Japanese term, ‘kikan-shido’ as a signifier or cipher for a more general 
conception of the particular activity – one that takes into account the patterns of 
participation of both teacher and students in the activity designated by ‘kikan-shido.’

In this analysis, I examined kikan-shido from several perspectives: Its form as observed 
on the video record of class activity; its meaning as reconstructed by teacher and 
students in post-lesson video-stimulated interviews; and its function (intention, action, 
and interpretation). My intention in describing and discussing this pattern of 
participation is to examine the legitimacy of the characterisation of kikan-shido as a 
whole class pattern of participation, and to situate the actions of teacher and learners in 
relation to this pattern of participation. It will be argued that while engaging in kikan-
shido, the teacher and the students participate in actions that are mutually constraining 
and affording, and that the resultant pattern of participation can only be understood 
through consideration of the actions of all participants. 

In the Australian LPS video data, it is clear that all three teachers made extensive use of 
“instruction-between-desks” in every lesson, and commonly for extended periods of 
many minutes. During this time, the Australian teachers monitored the students’ current 
activities and, sometimes, whether or not homework had been completed. While 
walking around the classroom, the Australian teachers frequently conversed with the 
students: Questioning, prompting, and generally scaffolding the students’ activity. In 
the lessons analysed in this study, the scaffolding activity was more likely to involve 
questioning students than simply telling them an answer or a procedure to use. 

For the Australian teachers, the activity of “instruction between desks” appeared to 
have at least three principal functions: (i) monitoring and encouraging current on-task 
activity, (ii) actively scaffolding this on-task activity, and, sometimes, (iii) monitoring 
the completion of homework. On many occasions teachers would kneel or sit beside a 
student (or students) and engage them in conversation about the task they were 
attempting.  

In presenting this analysis, three examples have been chosen to illustrate the diversity 
of practice evident within the Australian data (constraints of space prevent the complete 
reproduction of the data here). 
Example1:  A1-L8 (0:33:47 to 0:36:26) Guided Questioning by Teacher – Non-Routine 
Task
Example 2: A3-L8 (0:27:59 to 0:31:52) Guided Questioning by Teacher – Routine Task 
Example 3: A4-L12 (0:31:18 to 0:33:27) Explicit Teacher Demonstration 
In relation to these examples, it is useful to consider some related interview data 
(attenuated for reasons of space): 
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Interview with Teacher 1 (T1) 

T1 like I get down on my knees a lot and try not to be . . . I don’t want my 
presence to be overpowering. I don’t want them to think, “Oh she’s over me 
just telling me what to do.” I don’t want to come down on them 

T1 Oh . . . this was terrible [slow] . . . I-I ar as soon as I started going around oh I 
felt bad about this . . . 

 It just sort of . . . was made very obvious that I hadn’t . . . but that that’s also 
another thing that I do, I do go to see them straight away so they can tell me . 
. .  what they don’t understand – that that gives me a much better . . . 
understanding of whether . . .  what I have done up the front is of is of any 
value at all. 

Interview with Student from School 1 

S1 It’s really good when Mrs T1 comes around to everyone individually . . . it’s 
so if you are not sure about anything . . . you just like . . . she’ll come around. 

There are four key aspects to Teacher 1’s participation in kikan-shido that emerge from 
the data illustrated by the brief examples above: 

• The students’ perception of the teacher’s commitment to be “there” for 
“everyone”

• The teacher’s deliberate use of physical positioning to minimise any intimidation 
of the students and, implicitly, to reduce the prominence of the inevitable power 
difference between teacher and student 

• The inadequacy of the student’s use of the term “explain” to encompass the 
teacher’s instructional action. Video evidence suggests that the teacher’s actions 
were commonly much less directive or transmissive than is suggested by the term 
“explain” as used in student interviews. 

• The teacher’s utilisation of kikan-shido as the means by which to gauge the 
success of her whole class presentation. 

THE CO-CONSTRUCTION OF WHOLE CLASS PATTERNS OF 
PARTICIPATION

Of major interest for the purposes of this paper is the evidence that kikan-shido was a 
pattern of participation to which both teacher and students subscribed and which was 
co-constructed by them. In designating kikan-shido as an example of a “whole class 
pattern of participation” I need to demonstrate that it had a recurrent form, recognisable 
to those participating in it. This is not to say that the meanings attributed to the activity 
by those participating in it were correspondent. The point has already been made that 
individuals can participate in a practice whilst being positioned differently within it, 
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and whilst attributing different characteristics to the activity. That is, without being 
identical, the participants’ descriptions of the activity make it clear that they are talking 
about essentially the same form, but they may attribute quite different functions to that 
form. The other essential element is the need to demonstrate that all participants can 
shape the particular body of practice signified by kikan-shido. That is, that the pattern 
of participation is co-constructed. 

Evidence that students contribute to the form taken by a pattern of participation such as 
kikan-shido can be found in a statement from a seventh-grade student in an earlier 
study.

Davy Oh we do muck around (both laugh).  When me and Darren we just talk.  
When we've got our hands up we just talk during so she comes.  Then when 
she comes we get back to work.  Or maybe some hot day we're just talking or 
mucking around, or pushing people around.  Something like that . . . 'Cause 
sometimes I might have me hand up for five minutes.  She's right next to me 
and she goes over the other side of the room. And that's why I start mucking 
around . . . so I get her attention. 

This provides explicit acknowledgement by the student that the teacher’s participation 
in kikan-shido can be manipulated. 

The extent to which kikan-shido, as practised in the Australian classrooms analysed in 
this study, has distinctive cultural or national features is immediately suggested when 
classrooms in other countries are investigated for evidence of the same practice. From 
the comparison of sequences of ten lessons, taught by three competent Australian 
teachers, with matching data sets from countries such as the USA, Hong Kong, 
Mainland China, The Philippines, and Germany, it appears that, in general, the 
Australian teachers commit more time to kikan-shido than do the teachers in the other 
countries.

CONCLUDING REMARKS 

In this paper, I have attempted to frame the argument that any theory of classroom 
practice must conceive of the activities in the classroom as co-constructed. Kikan-shido 
as it has been reported here is clearly a dance done by teachers and students, where the 
steps are improvised according to need. The participants in the classroom, teacher and 
students, are complicit (co-conspirators) in this improvisation. Acceptance of this point 
has implications for the research designs by which we study the activities occurring in 
classroom settings. 

A corollary of this point is the problematisation of learning and teaching as distinct 
processes and as disjoint bodies of practice  - at least to the extent that this disjunction 
is applied to classroom settings. The need has been identified elsewhere (Clarke, 2001) 
for a single term to encompass the conjoint, co-constructed body of practice signified in 
Russian by obuchenie.
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But co-construction of practice and joint participation in practice do not connote 
commonality of purpose among the participants in that (classroom) practice. Even 
where all participants recognize and subscribe to a particular pattern of participation 
(the example used in this paper is kikan-shido), they may interpret its function 
differently. Nonetheless, the study of patterns of participation offers one approach to 
capturing both the fluidity of social interaction and its regularities. 

If we conceive of institutionalised patterns of participation as taking on the status of 
bodies of practice, then their co-constructed nature has further significance. Rather than 
progressively increasing the competence of their participation in a culturally or socially 
pre-determined practice (eg Lave & Wenger, 1991), this conception of the origins of 
practice accords significant agency (however constrained by institutional or cultural 
norms) to the participants to shape their particular pattern of participation and thereby 
to influence the nature of that practice. Wenger’s more recent writing (Wenger, 1998) 
assigns significantly greater agency to the participants in a practice. This analysis has 
provided some examples of how that agency is enacted. 

Acknowledgement: The author would like to acknowledge and thank Melanie Nash for her 
meticulous work in searching the interview record for teacher and student accounts of kikan-
shido.
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Despite a plethora of writings on Australian Aboriginal education (Craven, 1998; 
Fanshawe, 1999; LeRoux & Dunn, 1997; Malcolm, 1998; Malin, 1998; Morgan & 
Slade, 1998; Partington, 1998; Russell, 1999; Stewart, 1999), little has dealt with 
teacher perceptions of how Indigenous students learning in comparison with non-
Indigenous students. This is despite fairly wide acceptance that the way teachers 
perceive students will impact on the teaching, learning and assessment outcomes that 
students receive (Wyatt-Smith, 1995). The research reported in this paper was 
conducted in remote Aboriginal communities throughout Queensland. It addresses 
how “white” teachers, who are usually young and newly graduated, view the 
mathematics learning of Aboriginal student,  and how these perceptions differ for 
white students.
It is commonly accepted that education functions to reproduce social inequalities and 
that teachers have a role in this process (Bowles & Gintis, 1976). In Australia there is 
no greater case of social inequality than the gap between the Aboriginal and non-
Aboriginal citizens of the country. In the 200 years since Invasion, Aboriginal culture 
has been systematically disavowed, disempowered and displaced. Despite often well 
meaning rhetoric, this degradation of Aboriginal populations has, in many instances, 
not improved since the Referendum of 1967. Government after government has 
successively failed to rectify the mistakes of the past, instead using welfare and 
monetary reparations as a way of attempting to silence Aboriginal voices. Recent 
High Court decisions, councils on reconciliation and more recent revelations about 
the current living conditions of many of Australia’s Aboriginal peoples have gone 
some way to making governments and oppositions alike realise that Aboriginal 
voices will not be silenced. However, the policies and decisions of the past and those 
that continue have left many Aboriginal communities existing in a kind of limbo – 
existing neither within the traditional parameters of Aboriginal culture nor as part of 
the Western capitalist system which contextualises most of Australian society. This 
situation potentially provides one reason why Aboriginal communities are still 
plagued by issues of poverty, alcoholism, domestic violence, high mortality rates, 
high teenage pregnancies and a range of other social and health issues which 
ultimately threaten the survival of these communities (Queensland Government, 
2001).
1.  This study is funded by ARC Linkage Grant LP0348009 
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Aboriginal Education in the Australian Context. Education has not only failed to 
level the playing field between black and white Australians, it has in fact widened 
the gap between the two groups. The issues in Aboriginal education may be seen as 
relating to the historical and continuing negative treatment of members of the 
Aboriginal community by Anglo-Australian society. In particular, the non-
Aboriginal culture of the country has not recognised the various cultures of the 
Aboriginal communities. Education with its typically Eurocentric values has 
cemented this treatment by not acknowledging the knowledges that Aboriginal 
students bring to schooling and by further expecting ‘black’ Australians to jump 
through ‘white’ hoops in terms of achievement and assessment. Issues in education 
in Aboriginal communities are further complicated by growing health and social 
issues that leave many students unable to engage with school at the level required for 
success. Despite these obstacles, many Aboriginal students do negotiate the 
education system successfully. While this is due to many factors, it is no doubt 
helped by teachers who have taken the time to understand Aboriginal students and 
the way in which they learn. Developing effective teaching strategies that lead to 
effective outcomes for Aboriginal students has its origins in the ways in which the 
teachers perceive their students in terms of mathematics learning.
Teacher perceptions of students. While much has been written about teacher 
perceptions, surprisingly little concerns teacher perceptions of their students and the 
implications of these judgments, and even less deals with teacher perceptions of 
mathematics learning and Aboriginal students. The literature discusses how teacher 
perceptions of curriculum alter the way it comes to be implemented in classrooms 
(McLeskey & Waldon, 2002) and of the impact of teacher beliefs about the 
administration of a school on its successful organisation (LoVette & Watts, 2002). 
Writings about teacher perceptions of students occur largely in assessment theory 
where discussions tie perceptions to student achievement and, in particular, how 
knowledge about students become part of what Wyatt-Smith (1995) described as the 
“teacher knowledge files” utilised when teachers are making assessment judgments.  
Some studies do deal with teacher perceptions generally, examining the various 
different perceptions that teachers have of their students. A study by Uhlenberg and 
Brown (2002), for example, looked at teacher perceptions as the reason for the black-
white achievement gap in the United States. Of interest to this study is that while 
black teachers tended to lay the blame at the doorstep of schools and educational 
systems, white teachers tended to focus on students, parents and home environments. 
A further study by Drame (2002) collected data from 63 teachers to determine the 
extent to which socio-cultural variables affected teacher perceptions of classroom 
behaviour. The study concluded that teacher perceptions, particularly of learning 
disabilities and academic performances, affected teachers’ instructional patterns and 
their dealing with students. A study conducted across four countries (Woolman, 
2002) – India, Nigeria, United Kingdom and the United States – into dropout 
prevention discovered that reversing negative teacher perceptions about minority 
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children was one of the factors essential in keeping at-risk students in the education 
system. A further study (Mavropoulou & Padeliadu, 2002) found that rather than 
teacher perceptions of students being the primary determinant in affecting their 
behaviour in the classroom, it was in fact their own sense of behaviour and control 
that determined their treatment of students. 
While few studies have been conducted into teacher perceptions of Australian 
Aboriginal students, Green (1982) did examine the influence of the classroom teacher 
on the performance of Aboriginal children. In this study, a group of 15 white teachers 
were asked to list the major differences between teaching Aboriginal and non-
Aboriginal students. The teachers were drawn from classrooms where the Aboriginal 
school population varied from between 5-60%. The responses of the teachers were 
separated into five separate categories. All of the categories developed worked out of 
a deficit model whereby Aboriginal students were seen as having some form of 
‘insufficiency’ that caused their low academic performance. Of the 80 responses 
coded, 48 of them felt that the students themselves were deficient - lacking interest 
and language skills, and not having proper behavioural skills, adequate nutrition and 
proper school socialisation skills. Eleven of the responses blamed familial difficulties 
including low parental expectations, little parental support and a transient lifestyle as 
being the cause of the school problems experienced by Aboriginal students. Six 
responses suggested that there was a cultural gap between Aboriginal and non-
Aboriginal students and that this gap made it difficult for the students to assimilate 
into the schooling system, while four of the responses believed that the schools could 
be effective in teaching Aboriginal students if they received more assistance from 
government agencies. Few teachers saw the school as having any responsibility. As 
Green described, 

Eleven of the responses attributed the child’s learning problems to factors for which 
the school could be deemed responsible and six of those were written by one teacher. 
The most common responses were ‘Aboriginal children are ignored … reading 
materials are inappropriate … prejudice by teachers and non-Aboriginal children … 
teachers do not have special training to teach Aborigines … a lack of Aboriginal 
support staff … inadequate extra curricular activities’. (p. 111) 

Generally, working as they were from perceived deficiency models, none of the 
teachers appeared to expect Aboriginal students to achieve at schooling. Similarly, 
not one of the teachers involved in the study suggested that, potentially, their own 
beliefs that students would fail was a contributing factor in that failure. There is no 
sense in the data presented that the teachers felt that they could make a difference to 
the way Aboriginal students learnt and the success that they experienced.  
The view that teachers cannot improve the quality of Aboriginal education is directly 
contradicted by Malin’s (1998) case study of a teacher who had an outstanding record 
of success teaching Aboriginal students. According to the parents of one of the 
Aboriginal students in her class: 
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 [Mrs Banks] had something interesting every day for the kids there and they really 
wanted to go to school [my son] talked a lot about school then, and he never wanted 
to come shopping with me because he was going something at school and he was 
really excited about it. It was the same when I asked him to stay home and look after 
the baby. He did it but he never wanted to. But now [he’s not in Mrs Banks’ class] he 
wants to stay home and look after the baby and he’d rather do that than go to school. 
(p. 245-246) 

Malin attributed Mrs Banks’ success, in part, to her innate knowledge of the students 
and her belief that students could learn if she supported them. Therefore her success 
along with Green’s teachers’ lack of success supports the hypothesis that teachers’ 
perceptions of Aboriginal students and their learning – in particular seeing them 
positively and believing in their ability to learn - has a huge impact on the success 
that the teachers can achieve in a classroom.  
The focus of this paper. This paper reports on the perceptions held by teachers in 
schools with 50-100% Aboriginal populations of Aboriginal and non-Aboriginal 
students as mathematics learners. The interviews from which the data were gathered 
this data were part of a larger project dealing with the mathematics professional 
development of teachers in remote North-Western Queensland schools.
METHOD
As part of the data collection to evaluate the effectiveness of the mathematics 
professional development program, 12 teachers at three schools in the remote North-
West of Queensland were interviewed on two separate occasions, once early in the 
academic year and then again towards the end of the same year. The topics covered in 
the interview ranged from teachers’ perceptions of mathematics teaching and learning 
to what mathematics curriculum content should be taught and what the teachers felt 
needed to be done in order to improve mathematics classroom teaching. It should be 
noted that all the teachers interviewed were white, young and inexperienced, having 
only graduated from university within the last four years. 
At the second interview, teachers were asked to identify the mathematics learning 
differences between Aboriginal and non-Aboriginal students. This data was examined 
to identify any common threads that were apparent and whether or not there was any 
correlation between the responses of these teachers and the ones studied by Green 
twenty years ago.
RESULTS
The data indicated that some of Green’s (1982) findings were still prevalent in 
modern teachers’ talk about the differences between Aboriginal and non-Aboriginal 
students as mathematics learners, but there were some surprises.
Deficit perceptions. Six out of the twelve teachers’ comments could still be 
classified as originating from a ‘deficit’ model particularly with respect to the 
students and/or their families. The two main deficits referred to by teachers were 
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school readiness and attendance. Teachers believed that Aboriginal students were not 
able to adapt to the culture of school because of what was described as a lack of 
school readiness. According to one teacher: 

So you have to work so kids that come already knowing that you read, you listen to 
words and that you turn the pages, you know all that stuff that the kids do from 3. 
Where they can tell you, “I’m reading you the story!” They don’t have any of that. 
And they haven’t been read to and all that sort of stuff. So you’ve got to do so much 
work on school readiness! So that they’re behind the 8 ball from the start. So that is, 
what I find is the biggest thing.

As well, teachers saw lack of attendance and their transient lifestyles as a reason for 
Aboriginal students’ mathematics and general learning difficulties and a major 
difference between Aboriginal and non-Aboriginal students.  
The teachers attributed the lack of school readiness and attendance to a lack of 
interest in learning in the home environment. More than one teacher suggested that 
the real problem was that there was no support for learning in the family and that 
students were only sent to school to get them out of their parents’ hair and that the 
only reason that the students themselves stayed at school was to be with their friends.
According to one teacher: 

I visited everyone of my kids’ homes last year, I have never done that before, but I 
did it because I wanted to see where these kids were coming from. Eight or nine 
years of age, the home life that these kids are coming from, no wonder they would 
want to come to school. Just to get out of the house, no wonder they don’t have that 
fostering of further education, they do home, ride their push bikes around, there is no 
place where they can just sit and talk because Mum and Dad are not interested or 
don’t have the knowledge themselves.

The teachers believed that Aboriginal students identified school not as a place to 
learn but as a place to socialise. This was seen as occurring because of deficiencies in 
both the students and the family.  
Teachers referred to stories of Aboriginal students, for example, coming to school not 
only unable to read but without any knowledge of what a book is and that you had to 
turn the pages to support their perceptions. One teacher even stated that lack of 
interest in learning was a general characteristic of Aboriginal students except for one 
student who the teacher said had been brought up in a “European way”. The teacher 
saw this upbringing as non Indigenous:

But as long as I have known him, he’s had an amazing study habit and he’s 
upbringing’s been that, has been different to that of all Indigenous kids in this town. 
Very non Indigenous European upbringing in relation to Mum and Nana. Especially 
Nana’s expectations. A very non Indigenous person herself. The way she speaks, the 
way she carries herself …
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Teachers believed that Aboriginal students’ lack of preparedness or knowledge of 
school meant that students were behind in comparison to their non-Aboriginal 
classmates who generally came with knowledge of ‘school’ and what happened there. 
There was a perception in some of the responses that the lack of readiness for school 
gave rise to behaviour problems such as the inability to sit still.
Non-deficit perceptions. While some of the comments above reflected similar 
attitudes to those uncovered by Green (1982), comments 6 teachers indicated that 
some progress had been made in understanding the way in which Aboriginal students 
learn.The comments that showed progress referred predominantly to the differences 
in mathematics learning style. 
The most common perception was that Aboriginal students were hands-on learners
in mathematics. Two teachers used the term kinaesthetic to describe the way in which 
Aboriginal students learn with one stating that I have noticed with place value charts 
and things, making them touch, really made it sink in. This teacher suggested that the 
tactile nature of the way in which students learnt mathematics was not given enough 
consideration in the design of lessons. Another teacher stated the same position but in 
a negative manner, stating that Aboriginal students found pen and paper work 
difficult and had low tolerance for board work and copying information.  
One of the teachers interviewed believed that Aboriginal students tended to be more 
visual learners as a result of their hearing disabilities due to Otitis media, an 
inflammation in the middle ear that an estimated “30% and 80% of all school-aged 
children in remote Aboriginal communities” have (Queensland Government, 2001, p. 
311). However, she also said that while auditory instructions were problematic, 
Aboriginal students don’t like writing they would rather discuss things.
Other comments referred to lesson organisation. One of the teachers commented that 
Aboriginal students learn best in structured learning environments rather than 
undertaking work that required independent learning. Another teacher’s comment 
suggested that Aboriginal students were not risk-takers with their learning and 
preferred guidance and support.  
Interestingly, two teachers said that they found no real difference between Aboriginal 
and non-Aboriginal students in mathematics classrooms. One teacher, who taught 
mathematics to only four non-Aboriginal students out of a class of twenty-three, 
reported that all the students were there all the time regardless of their background, 
were equally keen and showed no big gap between the students. The implications of 
this teacher’s comments seemed to be that absenteeism was a problem for some of 
the students and created a gap in achievement. Another teacher stated I don’t really 
think of them as being Aboriginal or non-Aboriginal. I just try to think of them as 
each person, their standard and how I can teach better each and every one of them at 
their level. Finally, a third teacher felt that the students themselves weren’t 
intrinsically different but they became different as result of the way they were treated. 
This teacher felt that educationally Aboriginal students became teacher-fulfilling 
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prophecies because white teachers didn’t believe they had academic abilities. His 
perception was that low expectations in mathematics learning are producing low 
results but that if teachers raised the bar, Aboriginal students would rise to meet the 
challenge.
CONCLUSIONS AND DISCUSSION 
Interestingly, when the teachers in this study were asked whether or not there were 
any mathematics learning differences between Aboriginal and non-Aboriginal 
students, many of the teachers spoke of achievement related issues such as attendance 
and school readiness rather than actual learning styles. Those who did speak of 
learning, however, stated that Aboriginal students appeared less interested in written 
work and more motivated by hands-on activities. They also suggested that Aboriginal 
students were visual learners and coped better with structured supported learning as 
opposed to individual, independent learning.
With the exception of Green (1982), it is difficult to view the findings of this 
presented here in the context of other literature as at this stage no correlation has been 
done in this study between teacher perceptions and their impact upon students’ 
mathematics learning outcomes. In comparison to Green’s research, while some 
teachers did identify with the deficit models that suggest that problems that 
Aboriginals have with education are a result of their own limitations and that of their 
families, many teachers now do seem to acknowledge that Aboriginal students have 
different styles of learning that should be recognised. There is also less blame 
accorded in this study either to the system or the environment than in Green, but 
similar to Green there was only one comment that indicates that the curriculum 
adopted by the school does not provide enough for Aboriginal learning styles. 
Three distinct categories of responses have emerged in this analysis of teacher 
perceptions of Aboriginal learning styles. In the first category, teachers retain a 
stance that the problems of Aboriginal learning have causes that are deep-seated and 
cannot be solved by the school. In the second category, teachers identified that 
Aboriginals do have different learning styles. In the third category, teachers indicated 
that they saw no great difference between Aboriginal learning styles and those of 
non-Aboriginal students. How these perceptions come to affect teaching and learning 
and ultimately assessment outcomes is the subject of future analysis. 
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Our study concerns the analysis of teacher and student activities. Secondary school 
6th grade students were confronted, for the firs time, with solving equations. We used 
our cognitive models of students and experts (in algebraic calculations) for analyzing 
the teaching process and the cognitive functioning of students. Our model led us to 
consider the management of mathematical justifications as a fundamental teachers’ 
task. We believe that these models can become a daily tool for teachers, and 
principally for newer teachers 
The analysis of teacher and student activities was identified as an important research 
object in PME conferences. Boaler, J.(2003) observed : « One interesting observation 
from our coding of class time was the increased time that teachers spent questioning 
the whole class in the reform classes. Whereas the teachers in the traditional classes 
gave students a lot of information; the teachers of the reform approach chose to draw 
information out of students, by presenting problems and asking students questions”.
A good teacher’s activity can be resumed in the following manner: “when students 
were unsure how to proceed with open problems the teacher encouraged the students 
to engage in these practices: exploring, orienting, representing, generalizing and 
justifying. … rather than deflecting her authority to the discipline : is this correct?” 
Teachers need to analyze problems and student cognitive functioning in order to be 
able to guide the construction of student competencies in mathematics. Teacher need 
cognitive models to understand and to anticipate student errors and difficulties. How 
can students be guided in constructing competencies? We attempt to answer to this 
question here. 
This research is based on our previous researches, principally: "A cognitive model of 
experts' algebraic solving methods" (Cortés, A. (2003)) and "Solving equations and 
inequations, operational invariants and methods constructed by students" (Cortés, A. 
& Pfaff, N. (2000)). In these researches, we observed that most students (10th grade) 
use transformation rules without mathematical justification and that their solving 
methods resemble algorithms. In contrast, what makes teachers’ solving methods 
effective is the mathematical justification of transformations. The respect of this 
fundamental characteristic guided the teaching process that we analyze in this article.



www.manaraa.com

2–248  PME28 – 2004

The main goal of our study is to use our cognitive models in constructing a tool for 
analyzing student activities and the teaching process. To discuss the relevance or the 
best manner of teaching pre-algebra is not our goal. 
The experimental class and the research. The official curriculum for sixth grade in 
France includes the solving of equations. We followed this prescription and our sixth 
grade students were confronted, for the first time, with solving equations of the type: 
x+a=b; x-a=b; x/a=b; a/x=b; ax+b=c; b-ax=c; where a, b and c are positive decimal 
numbers. Our students had never worked with numbers with sign (oriented numbers), 
so the solutions we asked them to calculate were never negative numbers. The sixth 
grade is the first year of the secondary cycle , the average age of our thirty students 
was eleven years old and students' level of knowledge was good. The experiment was 
conducted in a secondary school situated in the north-east of Paris. We experimented 
for three hours with solving of equations and the teacher of the class was Mrs. 
Kavafian. The data analyzed were the students' written work and the recorded 
interaction between the teacher and the students. During the experiment, students also 
solved word-problems that we do not analyze in this article.  

THEORETICAL FRAMEWORK 
The students explicitly explored the concept of the equation, the concept of the 
unknown and they used transformations for the first time. We focused our work on 
two tasks that we consider essential in algebraic calculations: the analysis of the 
mathematical object and the checking of the validity of transformations. In this 
theoretical framework we only included the used results of our previous researches 
and the theoretical concepts used in constructing the learning courses and in the 
analysis of data. 
In Cortés A. (2003) five invariant tasks were identified. These are the tasks that the 
expert always carries out (implicitly or explicitly) in performing transformations. 
Each task is carried out by means of some specific piece of knowledge or by means 
of a competence, that we call the operational invariant of the task. The concept of 
operational invariant was introduced by Piaget (for example, Piaget (1950) 
considered the conservation principles in physics as operational invariants of physical 
thought). The invariant tasks of algebraic calculations, adapted to the solving of 
equations in our experiment are: 
1- Analyzing the equation and choosing a transformation. The operational invariant 
is the concept of the equation. 
The concept of the equation enables subjects to carry out the analyses which lead to 
choosing the right transformation. However, our students were being confronted with 
equalities in which the unknown was represented by a letter for the first time. So, 
during the experiment they explicitly began the construction of the concept of the 
equation. The teacher guided the students in conceptualizing the letter as an unknown 
number, the notation of multiplication as a juxtaposition of the letter and the 
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coefficient and, notably, the meaning of the equal sign: an equivalence which can 
either be "true" or "false". 
The teacher guided the students in analyzing the equations appropriately according to 
the solving method. First, equations were solved by substituting numbers for the 
unknown. Later, equations were solved by means of transformations. 
Frequently, the analysis of the equation lead the students to make inferences like "It's 
an addition, so I should subtract", "It's a multiplication, so I should divide", etc.; 
which are false in certain situations. These transformation rules are theorems in 
action (Vergnaud G. (1990)); they are mathematical properties that the students use 
automatically without mathematical justification. 
2- Identifying the operation to be given priority. 
The identification (usually implicit) of the operation to be given priority allows 
choosing a relevant transformation. There is a multiplicity of operations and the 
priority of operations depends on the situation. Subjects need to have knowledge 
concerning each pair of operations involved in a particular situation; in this sense the 
operational invariant is composite. Similar operational invariants were found by 
Pastré, P. (1997), in the area of cognitive ergonomics. In the present research, 
students were confronted with the priority of multiplication over addition and 
subtraction.
3- Checking the validity of the transformation. A mathematical justification of the 
transformation is the operational invariant of the task.  
 A mathematical justification of the transformation chosen establishes a link 
between the mathematical properties of the equation and the transformation. A 
mathematical justification allows subjects to check the validity of transformations. In 
this research the mathematical justifications used were, principally, the students' 
knowledge of arithmetic. 
a- Operational invariants of the "principle of conservation" type: the conservation of 
the truth-values of equations.  
At the beginning of the experiment equations were solved by substituting numbers 
for the unknown: the truth-values of the equation allowed students to identify the 
solution. This mathematical property is "self-justified" or "self-evident" for the 
students and is the mathematical justification of the procedure. Students implicitly 
used the conservation of the truth-value when they verified solutions obtained by 
transformations (by substitution in the given equation).  
All authorized transformations conserve the truth-values of mathematical expressions 
and this property constitutes the more general mathematical justification and filiation 
of transformations in solving equations, inequations, systems of equations... We 
believe it is relevant to use this principle in teaching algebra from the very outset as 
well as in all types of algebraic calculation in secondary school.
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b- Operational invariants of the "self-evident  mathematical property" type which 
students are able to justify.
Mathematical justifications of additive transformations. Students summarized the 
addition of two decimal positive numbers in the following manner: "the addition of 
two little numbers makes a bigger number". Then, the biggest number was identified 
and, for students, this mathematical property was "self-evident". This property 
allowed students to analyze subtraction: the addition of two numbers, for example 
67+22=89, makes two subtractions possible "the biggest minus a smaller number" 
(89-22=67; 89-67=22). Likewise, the subtraction of two numbers, for example 89-
22=67, makes an addition possible, 67+22=89, whose truth-value allows checking the 
validity of the result of the subtraction. It is possible to check an addition by means of 
a subtraction but it is not usual.
Mathematical justifications of multiplicative transformations. The students were 
competent in multiplying and dividing integers. Their identification of the biggest 
number allowed transforming a multiplication into a division and vice-versa, for 
example, 7*8=56 leads to 56/7= 8 and 56/8=7. This property lead students to make 
errors with decimal numbers: 9.1=0.7x13 sometimes lead to 13/9.1=0.7. The main 
goal of our research was to explicitly introduce the tasks of analysis and the checking 
of the validity of transformations. To this end, we used division without any 
particular difficulties.
4- Checking transferred terms in a new written expression. This task is not relevant 
to solving the equations used in this research. 
5- Numerical calculations. Most students could do numerical calculations without 
any particular difficulty. For other students, the solving of equations allowed them to 
reconstruct lost arithmetical knowledge. 
The expert's algebraic solving methods. We summarize the main characteristics of 
expert's solving methods (Cortés A. (2003)). The analysis of the particularities of the 
mathematical object allows subjects to choose relevant transformations. For most 
exercises, teachers immediately choose a relevant transformation. They have reached 
a very high degree of expertise and they do not need to explicitly justify 
transformations: transformation rules are self-evident (they have the intimate 
conviction that they are true); it allows them to work quickly. But teachers are able to 
check the validity of transformations explicitly: they know the mathematical 
justifications of the transformations they use. 
Some situations are not self-evident for teachers and when they are confronted with 
the choice of one transformation among several, they explicitly check the validity of 
transformations by means a "self-evident " mathematical property. This aspect of the 
experts' functioning constitutes a relevant model for the analysis of learning and 
teaching processes. 
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EXPERIMENTAL WORK 
 In solving equations in which the unknown was represented by a letter, 
students explicitly explored the concept of equation and used two solving methods. 

EXERCISE 1 - Find the numerical value of the number n: 56/n=7; n= ; 22-
n=11, n= ; n+8=18, n= ; 108/n=12, n= ; 25/n=5 n= ; 200-2*n=88, n= ; n*1.2=12, n= ; 
50-n=46, n= ; 3*n+5=23, n= ;  n*42=0, n= . 
The analysis of the equation: the teacher asked the class to read the equations 
together before doing any calculations. The first equation was read as a question, this 
allowed analyzing the meaning of the letter. Students read the equation as an 
unknown result, for example "how much is n?"; "which result is n?". One student 
managed to express the question as "what number represents the unknown, n". 
The analysis and the solving of the equation. The first equation was read as a 
numerical operation: a student said "56 divided by n makes 7". Students were given 
the solution "n is equal to 8" and were asked to check the validity of the result by the 
truth-value of the equation (56/8=7). The teacher  summarized the reading of the 
second equation as "22 minus a number makes 11". Students substituted numbers for 
the unknown (22-11=11) and answered "n is equal to 11". For easy equations, most 
students proceeded by substituting numerical values until they could find the value 
that satisfied the truth value of the equation, the truth value being what allowed them 
to identify the solution.
Solving the equations through transformations. Analyzing equations lead students to 
make inferences: "It's an addition, so I should subtract", "It's a multiplication, so I 
should divide", etc. These rules, at that time, were theorems in action. For example, 
some students mentally transformed the equation 56/n=7 into 56=n*7 (they did not 
write the new equation), and thus used multiplication for solving the equation. 
Similarly, for the equation 22-n=11 which was transformed into 22= n+11, the 
solution was calculated by addition. In the solving of the equation 108/n=12, some 
students suggested "the solution is 9; 108 must be divided by 12". 
Identification of the operation to be given priority. Transformation rules lead to 
errors. For example, in order to solve 200-2n=88, two students proposed to the class: 
"200-2=198 and 198-88=110". The teacher  analyzed the equation taking into account 
the priority of the multiplication: "200 minus two times something(2n) is equal to 
110"; "give numerical values to n and see what you can find". The students made the 
correct calculation: "200 minus something is 88... so it's 112...and 112/2 is 56". The 
teacher asked them to check the validity of this solution: "Are you sure, what do you 
have to do to be sure?". The students suggested that "200-(2*56) must be equal to 
88". The students implicitly used the conservation of the truth-value as justification. 
Exercise 2: The solution and the truth-value of the equation: only one solution is 
possible.
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The following equations: a) 3n+15=27; b) 78-5x=46; c) 42-3n=2n+27, were 
implicitly analyzed as the equality of two functions. Students completed tables in 
which several values were given to the unknown. The two members of the equation 
were compared: the equality was either "true" or "false".
Students explored the variation of the two members of the equations and were able to 
determine and justify the fact that there was only one solution (we used equations 
which have a single solution). For de first equation the justification was "…it keeps 
going up and will never be 27". For the second equation the justification was "When 
x is bigger than 24.8, it keeps going down and never will be 46". For the third 
equation the justification was more elaborate: "One side of the equation goes up and 
the other goes down, they meet only once". Students wrote these justifications down. 
Exercises 3 and 4 - Using transformations and checking the validity of the 
transformations.
Equations were solved by writing transformations, for example: 67+n=125; n=125-
67; n=58. The written transformations allowed the teacher to perform the checking of 
the written numerical operations using a student's arithmetical justifications. The
teacher established a strong tutorial activity: she asked the class to write the 
transformations down before performing the numerical calculations. In exercise 3, 
students solved the following equations: 33+n=150; 4.5+n=9.2; n-22=67; x-33=99; 
5y=135; 10m=66; n/11=33; z/6=56. In exercise 4: 67+n=125; 220+2n=9000; 4z-
16=8; 200-n=88; 6.6y=132; 250=5t-35; n/3.1=7; n/6+20=90. 
Checking the validity of additive transformations. In solving the first equation 
33+n=150, the teacher analyzed the equation in a particular manner: "n is the number 
which we must add to 33 to obtain 150, is this the definition of a subtraction?" The 
students answered, "n is the difference between 150 and 33". The equation n-22=67 
was analyzed as a subtraction, which can be verified by an addition: 67+22=n. The
analysis of the equation as a numerical operation, which can be transformed into 
another operation, allows choosing a relevant transformation (notably, the numerical 
calculation of the solution). At the same time, arithmetical justification allows 
checking the validity of the transformation.  
 Certain students applied transformation rules which lead to errors. For example, the 
equation 200-n=88 was transformed into n=200+88. The teacher guided the students 
in constructing another equation, an addition (the verification of the subtraction ) 
"200 is equal to 88+n". In order to solve the equation 4z-16=8, one must first 
calculate the number 4z. The teacher guided students' analysis, which ended in "4z is 
the biggest number. If I subtract 16, the result is 8; so 4z is equal to 8+16" ...."z is 
equal to 24/4". 
Checking the validity of multiplicative transformations. For solving equations such as 
5y=135, students used rules like “It’s a multiplication, so I should divide”. They 
proposed that “y is equal to 135 divided by 5”. They did not check the 
transformation, they checked the solution by verifying the truth-value of the equation: 
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“Once y has been calculated, you can multiply 5 by y and should get 135)”. The 
teacher analyzed the equation appropriately, this allowed checking the 
transformation: “In the equation 5y=135, we have the numerical value of 5 times y 
and we need to know the value of only one y, so y=135/5”. The equation was 
considered as a particular case of proportionality. To solve the equation n/11=33, 
students proposed, “n=33x11”. When the teacher asked for a more analytic reading of 
the equation, students came up with “If you divide n into eleven equal parts, the value 
of each part is 33”; “you multiply n by the number of parts”. The teacher’s tutorial 
activity obliged students to perform only those transformations that they could justify. 
A month later, the students were given a post-test. We observed seven errors in the 
solving of 3,7-y=0,1 (y=0,1+3,7) and x/2+5=8 (x=4/2). Students made small number 
of errors in the solving of the ten other equations (similar to Exercise 4). 
CONCLUSION. In research and in constructing teaching courses, it is fundamental 
to analyze both the problems and the subject’s solving activity. Identifying the 
invariant tasks constitutes a tool for the analysis of a subject’s solving methods.
An operational invariant was associated to each invariant task, this is the 
mathematical knowledge that allows subjects to perform the task. This definition of 
the theoretical concept of the operational invariant enables us to explore and to 
understand the nature of operational mathematical knowledge. 
We focussed our research on the analysis and the justification tasks, which are 
essential to solving mathematical problems. The students’ arithmetical knowledge 
was used to justify the transformations performed. In order to solve equations, the 
students analyzed numerical operations in different manners, thus constituting 
another approach to arithmetic which enabled most of them to develop their 
mathematical knowledge, and, enabled still other students to reconstruct or to learn 
some of those arithmetic properties. In general, in teaching new concepts, it is 
possible to develop or to reconstruct students’ previous knowledge.  
We consider that students must be made to realize the advantage of working with 
mathematical properties that they are able to justify through daily work in class. The 
transformation of student theorems in action into justified mathematical knowledge is 
the way to build operational thought. This was the main goal of this research, because 
algebraic calculations will be presented differently later. Indeed, solving equations, 
inequations and systems of equations that include other types of numbers (numbers 
with sign, fractions…) is made possible by means of more general transformation 
rules and justifications. But the tasks of analyzing and checking the transformations 
remain invariant. 
The teacher of the class had much experience and our research did not radically 
change her work. But our theoretical framework allowed her, notably, to refine the 
questions which guided students in conceptualizing new procedures. 
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UNCERTAINTY DURING THE EARLY STAGES OF PROBLEM 
SOLVING 

Maria de Hoyos, Eddie Gray and Adrian Simpson 
University of Warwick 

This paper discusses the role of uncertainty during the early stages of problem 
solving. It is argued that students start the problem solving activity with some degree 
of uncertainty that may vary from high to low. This degree of uncertainty may affect 
students’ decisions at early stages of the problem solving process. It may be 
suggested that an awareness of the possible effects of uncertainty may better prepare 
students to approach problem solving and support them to start building their own 
problem solving strategies.

INTRODUCTION
The idea of looking at uncertainty during problem solving emerged from an attempt 
at conceptualising what students do as they tackle non-routine mathematical 
problems. By analysing students’ work it was observed that, at the outset, students’ 
problem solving processes took place in a context of uncertainty. In other words, it 
was observed that problem solving usually started as a situation in which actions had 
to be taken in spite of insufficient knowledge. It was also observed that uncertainty 
was present in different degrees and that this led to different consequences.
A general look into the study of dealing with uncertain situations suggests that its 
importance has long been recognized in other areas. In business management, for 
instance, the study of uncertainty can be traced back to at least the late 1950’s. In this 
area, the focus on uncertainty has evolved from trying to find ways of reducing it, to 
tapping into it as a source of creativity and stimulation (Jauch & Kraft, 1986; Ogilvie, 
1998). Due to its role in modern organisations, attempts at modelling uncertainty 
(e.g., Downey & Slocum, 1975) have been, and may continue to be, conducted.
Uncertainty in mathematical situations has been considered in various studies. The 
most common position that has been adopted towards the study of uncertainty in 
mathematics education has been to acknowledge it (e.g., Rickard, 1996) or to explore 
ways of making positive use of it in didactic situations (e.g., Hadas & Hershkowitz, 
1999; Hadas, Hershkowitz, & Schwarz, 2000). Few studies have attempted to 
develop models of uncertainty and to explain its relation to other aspects of learning 
and doing mathematics. Studies of this sort may provide useful information for those 
studies in which uncertainty emerges as a result or plays an important role.  
This aim of this report is to discuss uncertainty as observed in a study of 
mathematical problem solving. The model of uncertainty that will be presented here 
is part of the broader model that emerged from this study. This sub-model aims at 
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conceptualising the main aspects of uncertainty and the way in which they relate and 
affect each other. 

THE CONTEXT: A BROADER STUDY 
The results presented here are part of a broader study which investigated students’ 
problem solving processes. The aim of this study was to develop a model that 
explains how students deal with non-routine mathematical problems. The study made 
use of the grounded theory methodology (Glaser & Strauss, 1967) and, particularly, 
of the methods of data analysis described in Glaser (1978; 1998). In general, 
grounded theory can be summarised as a methodology that consists of constantly 
comparing data (see Glaser, 1992). The method of constant comparison allows the 
researcher to generate categories and to start hypothesising about the way in which 
they are related. Emergent hypotheses are then compared against further data and 
thus a theory is developed. Grounded theory is, thus, an inductive methodology in 
which general patterns are derived from, and grounded in, the data.
This study was conducted within the context of a problem-solving course offered at 
the University of Warwick. The students that participated in the course were 
undergraduate students doing mathematics, computer sciences or (four-year) teacher 
training degrees. The aim of the course was to allow students to reflect on their 
“mathematical thinking and to identify and develop their own problem-solving 
strategies”.
During the course, students were required to work on a number of non-routine 
mathematical problems and to document their thinking processes as they occurred. 
This provided students with a written document of their work and made it possible 
for them to review and share their ideas with the rest of the group. From the 
researcher’s perspective, this provided rich data about the way students solve 
problems as well as some insights into their beliefs and abilities in relation to 
mathematics. Students’ written accounts, or ‘rubrics’ (see Mason, Burton, & Stacey, 
1982), were used as the main source of data for this study. Observations were also 
made during each session and informal interviews were conducted with a number of 
students.
The problems that students had to tackle may be described as non-routine 
mathematical problems, i.e., problems for which students knew that they were not 
expected to use any procedure or knowledge in particular. Also, some problems can 
be considered ‘open ended’ in the sense that students had decide what was it exactly 
that they wanted to achieve as a solution (see appendix 1)i.

GENERAL RESULTS: A FRAMEWORK FOR LOOKING AT 
UNCERTAINTY
The analysis of students’ rubrics during the main study gave rise to a considerable 
number of concepts about what students do with during problem solving. Finding 
suitable terms for these emerging concepts was, in many cases, a difficult task. 
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Furthermore, in the cases where terms were readily available, variations in basic 
aspects of their definitions made it difficult to make use of them. For this reason, the 
reader will notice that the study introduces of a number terms that, at first sight, may 
appear strange or even unappealing. These terms were chosen because, at the time, 
they were the most suitable way of illustrating and naming the concepts that emerged. 
They will continue to be in use until more suitable ones are found or until new data 
suggests that they need to be modified. 
The following is a brief outline of the general results of the study. Due limitations in 
space, the concepts that will be introduced cannot be fully discussed. The outline, 
however, must serve to give a general picture of the framework from which 
uncertainty is being considered.
A model of students problem solving processes 
An analysis of students’ rubrics suggested that problem solving is best conceptualised 
as a cognitive process. This process was called ‘solutioning’ to highlight the on going 
nature of the situation. Solutioning consists of three main stages, namely, mobilising,
eliciting and universalising. Mobilising is the stage at which information and 
understanding start to be generated in order to start solving the problem. Eliciting 
refers to the stage at which students go beyond the data that is given and what is 
being observed and start developing a solution. Universalising is the last stage 
whereby elicited solutions are improved and transformed into more general, rigorous 
and compact results.  
For most students, the aim at the initial stages of problem solving is, in general, to 
generate data, information and understanding. Thus, it may be said that solutioning 
starts with mobilising. As said, mobilising is the process through which students start 
dealing with the situation, learning about it and understanding it. Mobilising is 
characterised by uncertainty and has two main consequences, namely, knowledge
growth and observationning. The following figure provides a general representation 
of the model described above. 

Mobilising Eliciting Universalising

Characterised by: 
� Uncertainty
� Knowledge growth 
� Observationning 

SOLUTIONING
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UNCERTAINTY
Students start to ‘solution’ by mobilising. Mobilising may start to be conducted in a 
context of uncertainty. A context of uncertainty is one in which students lack the 
knowledge and understanding necessary  to know exactly what to do next in order to 
deal with the situation. In spite of this lack of knowledge, students are required to 
make decisions and take actions if they want to eventually provide a solution.
Uncertainty can be analysed from students’ perspectives as they experience it. 
Students express uncertainty by raising questions about the situation or by making 
decisions based on insufficient or inadequate information. In the following example, 
Hannah started by asking herself some questions about the situation and trying to 
provide answers to them. In the case of the first question, her queries were easily 
resolved. As for the second question, the answer that she provided was based on the 
intuitive information she had at her disposal.  

What is the question asking me? I want a rectangular piece of paper, and take away from 
it the largest possible square. I then want to repeat the process with the left-over 
rectangle. I want to know what different things can happen, and when they will.
Is there anything else I want to know? Well, I want to know where to stop–do I only 
repeat the process once or do I keep going until I reach and endpoint. I think I’ll only 
repeat it once or otherwise the process could be infinite! So, I want to know what the 
different things are that could happen. (Hannah, Square Take Away, p. 1) 

Uncertainty can vary in degree from high to low (and in some cases – where a student 
believes they know a precise, direct route to a solution – it can be null). Students may 
meet the problem with little or no knowledge about the situation, i.e., with a high 
degree of uncertainty. On the other hand, they may be presented with what they 
perceive as a familiar problem or with a problem that refers to material with which 
they are already experienced. In this case, there is a lower degree uncertainty. A 
lower degree of uncertainty means that the student has some ideas about the situation 
and about how to start tackling it.
The following quotes briefly illustrate cases of high and low uncertainty. The first 
example corresponds to a case of high uncertainty (as expressed by the students) 
whereas the last two correspond to cases in which uncertainty seemed to be low. 

Having established what exactly the question is asking me, I feel this problem is going to 
be incredibly difficult. I could literally place 2002 pieces of paper in the hat, however, 
there are some many possibilities of what number can be drawn out that I don’t know 
how this would help. (Gina, Hat Numbers, p. 1) 
I can immediately see that this problem is very simple if I use squares, which are just 
regular rectangles. So I will first look at the squares briefly… (Jasmine, Diagonals of a 
Rectangle, p. 1) 
From first looking at the problem I can see that the answer will have something to do 
with common factors. (Jasmine, Visible Points, p. 8) 
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The degree of uncertainty is related to the type of decisions that students make during 
mobilising. Mobilising requires students to make decisions about what ideas to 
explore, about what to focus on. These decisions may vary from arbitrary to well 
informed. Arbitrary decisions are decisions for which there is insufficient information 
to make a choice and where students end up deciding on the basis of less relevant 
factors (e.g., choosing a course of action over another because it seems easier). High 
uncertainty means that decisions will be made arbitrarily, almost at random. As 
uncertainty decreases, however, decisions are likely to become more informed.  
From the two examples below, the first one belongs to a student that seemed to be 
considerably uncertain about the situation. His decision on what to focus on at that 
time seemed to be more arbitrary than well informed. As for the second example, it 
belongs to a situation of low uncertainty. As it can be observed, the decision that the 
student made about how to proceed seemed a more informed one.  

Well, the question of the problem is perhaps ambiguous. I could make out of this 
question that I will aim to find what sizes work or what particular configurations work. 
For now I will concentrate more on the sizes (dimension) problem. (Marcus, Faulty 
Rectangles, p. 1) 
We know (a+b), (b+c), (c+a), but we want to know a, b, c explicitly. A solution to this 
problem would be to express a, b, c in terms of (a+b), (b+c), (c+a). (Alan, Arithmagons, 
p. 1) 

The decisions that students make during mobilising may or may not lead to 
sustainable courses of action. A sustainable course of action or idea is one that turns 
out to be manageable for the student and that leads to generating results. High 
uncertainty means that students will be unsure about whether a particular course of 
action will be sustainable or not; they will need to engage in it in order to find out. 
Furthermore, the less uncertain the situation is, the more likely it is that the student 
will choose a sustainable course of action. The consequence of choosing a course of 
action that is not sustainable is that it will be eventually abandoned and that a new 
one will need to be found. 
The following quotation illustrates how a decision taken in a context of uncertainty 
led to an unsustainable course of action. Realising that the chosen course of action 
was not going to be very productive provided the student with some experience that 
might have helped towards decreasing her uncertainty. Nonetheless, the student had 
to abandon the present course of action and face the need of finding other possible 
avenues to pursue. 

I will start by writing a grid of numbers, and using it to specialise systematically to find 
sums of lines with different gradients and different starting points... 
Stuck! I don’t think this will work (i.e., I don’t think I will be able to find any patterns) 
using this method, because the amount of numbers in the sum does not necessarily 
increase as you move down the table (i.e., as you start with a higher number) because the 
line does not necessarily pass through a number in the top row. (Hillary, Sums of 
Diagonals, pp. 1–2) 
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Arbitrary decisions made in contexts of uncertainty are not as valued as informed 
decisions based on logical deductions. However, making an arbitrary decision may be 
the best option for a student dealing with a highly uncertain situation. On the one 
hand arbitrary decisions may lead to an unsustainable course of action. On the other, 
arbitrary decisions may also bring unexpected knowledge and understanding and 
allow the student to open promising avenues. This suggests that, in some situations, 
making arbitrary decisions can be a good action after all. 
Reducing complexityii is an important aspect of mobilising that seems to help 
students deal with uncertainty. By reducing complexity, students focus on specific 
and relatively simple aspects of the situation. In students’ words, they “start at the 
beginning”, looking at simple cases or examples first. Students’ aim in reducing 
complexity is to gather information and to gain understanding in order to be able to 
eventually move on to more sophisticated cases. Reducing complexity helps students 
deal with uncertainty by allowing them to focus on manageable aspects of the 
situation and helping them to start gaining knowledge and understanding.
In the example quoted below, the student was relatively uncertain about the situation. 
Reducing complexity helped her to deal with some of this uncertainty by allowing 
her to start learning about the situation. 

As m, n increase, what percentage of points is visible from (0, 0)? 
Stuck! I have no idea what the percentage should be as it would vary when m and n are 
varied.
Let me try to draw some planes with different sizes… 
From the first trial, I can see that the percentage that we want to know is: 
(visible points on a plane/visible+invisible points on a plane)x100. (Karina, Visible 
Points, p. 1) 

Another important aspect of uncertainty is the way if affects observationning. As a 
result of mobilising, students start noticing salient facts and pointing them out as 
observations. Observationning is about noticing and making a note of these facts 
(thus the term observation-ing). As a result of uncertainty, observationning, 
especially at early stages, can be exhaustive, meaning that students will try to make a 
note most of what is being observed. In other words, students may engage in noting 
most (if not all) seemingly salient facts or ideas “just in case” they are useful or 
relevant at a later time. The less the student knows about the situation, i.e., the higher 
the degree of uncertainty, the more likely it is that observationning will be conducted 
in this way. 
The following example illustrates how uncertainty affects observationning. It may be 
suggested that it was due to uncertainty that, at the start of her process, Carolyn chose 
to reflect on the first observation made. It can be speculated that, not knowing too 
much about the situation led her to closely consider a variable that would later be 
considered irrelevant. 
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I have noticed that there is a line of symmetry running through the grid from the top left 
through to the bottom right [see appendix]. Does this mean that, for example, 9 to 5 will 
give the same result as 5 to 9? Will diagonals that go to and from the same number (e.g., 
4 to 4) need a different formula than those that go to a different number (e.g., 9 to 5)? … 
Hopefully I will be able to answer these questions by the end of this investigation. 
(Carolyn, Sums of Diagonals, p. 1) 

Finally, uncertainty decreases as the student’s knowledge and understanding of the 
situation increase. In other words, uncertainty decreases with knowledge growth.
Knowledge growth is the change in what students know about the situation and in the 
way they deal with it. Knowledge growth is usually set off as a consequence of 
mobilising, however, it is not limited to it. Knowledge growth can also be the result 
of any other action that brings understanding and generates information. Since 
knowledge growth increases what students know and improves their understanding of 
the situation, it may help to reduce uncertainty.

IMPLICATIONS OF THE STUDY 
The model of uncertainty proposed in this report suggests that the more uncertain the 
situation experienced by students during problem solving, the more likely it is that 
they will have to make arbitrary decisions. Moreover, it suggests that arbitrary 
decisions are less likely to lead to sustainable courses of actions than informed 
decisions. The model also suggests that students’ uncertainty decreases with 
knowledge growth. This knowledge growth is a consequence of mobilising but it may 
also be said that uncertainty can serve to stimulate it. For instance, the exhaustive 
way in which students conduct observationing at early stages seems to be the result of 
working in an uncertain environment. 
Recognising the fact that uncertainty may be present in various degrees can help 
students prepare for best dealing with it. By this, it is neither suggested that a context 
of uncertainty is a negative situation nor that it should be avoided. In fact, it seems 
that that students could benefit from learning to tolerate some uncertainty and even 
from actively creating certain levels of it. As suggested by other areas, a context of 
uncertainty can be a stimulating environment in which interesting questions can be 
raised and novel perspectives can emerge (see, e.g., Schoemaker, 2002). 
Initial uncertainty may be a characteristic not only of problem solving but of the 
mathematical activity in general. Further studies can help to explain the role of 
uncertainty in other areas of mathematics as well. Such studies would help teachers 
and students to better understand the role of uncertainty and would support them in 
developing strategies for effectively tapping into uncertain situation. 
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i The following are some examples of the problems students tackled during the problem solving course:  

Square Take Away: Take a rectangular piece of paper and remove from it the largest possible square. Repeat 
the process with the left-over rectangle. What different things can happen? Can you predict when they will 
happen? 

Hat Numbers: A hat contains 1992 pieces of paper numbered 1 through 1992. A person draws two pieces of 
paper at random from the hat. The smaller of the two numbers drawn is subtracted from the larger. That 
difference is written on a new piece of paper which is placed in the hat. The process is repeated until one piece 
of paper remains. What can you tell about the last piece of paper left? 

Faulty Rectangles: These rectangles are made from ‘dominoes’ (2 by 1 rectangles). Each of these large 
rectangles has a ‘fault line’ (a straight line joining opposite sides).  

        
      

What fault free rectangles can be made? 
ii Reducing complexity is a term that seems to increasingly point towards specializing (see Mason, Burton, & Stacey, 
1982). For the purposes of this study, the former term was considered more appropriate to convey students’ main 
concerns as they focus on specific or simplified aspects of the situation.  
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STUDYING THE MATHEMATICAL CONCEPT OF 
IMPLICATION THROUGH A PROBLEM ON WRITTEN PROOFS 

Virginie Deloustal-Jorrand
Laboratoire Leibniz - Université Joseph Fourier - Grenoble-France 

In this paper, we present a didactic analysis of the mathematical concept of 
implication under three points of view : sets, formal logic, deductive reasoning. For 
this study, our hypothesis is  that most of the difficulties and mistakes, as well in  the 
use of implication as in its understanding, are due to the lack of links in education 
between those three points of view. This article is in the continuation of one 
previously published in the acts of PME 26. We present here the analysis of another 
problem from our experimentation. We want to show how a work on written proofs 
can allow a work on implication. Then we conclude with some transcripts. 

INTRODUCTION
The existence of the implication as an object of natural logic, leads to confuse it with 
the mathematical object. As a result, the implication seems to be a clear object. Yet, 
students have difficulties related to this concept until the end of university, especially 
with regard to necessary conditions and sufficient conditions. Moreover, though it is 
in the heart of any mathematical activity, it is hardly ever taught in French teaching. 
Our theoretical framework is placed in the theory of french didactics, in particular, 
we use the tools of Vergnaud's conceptuals fields theory and those of Brousseau's 
didactical situations theory. Our study is based on the work of V. Durand-Guerrier 
[Durand-Guerrier, 1999] on the one hand and of J. Rolland [Rolland, 1998] on the 
other hand. V. Durand-Guerrier shows, in particular, the importance of the contingent 
statements for the comprehension of the implication. J. Rolland, as for him, was 
interested in the distinction between sufficient condition and necessary condition. 
This study is a part of our thesis on the mathematical concept of implication. It 
follows and supplements the study presented at PME 26. We present three points of 
view on the implication, a mathematical and didactical analysis of a problem on 
written proofs and conclude with some transcripts. 

THREE POINTS OF VIEW ON THE IMPLICATION 
This paragraph was detailed in our previous research report in PME 26. Yet, we think 
this part of our research is necessary for the reader to understand the following 
problem and the aim of our research hypothesis. 
The mathematical implication seems to be a model of the natural logic implication 
we use in our everyday life. Like any model, this mathematical concept is faithful 
from certain angles to that of natural logic but not from others. This distance between 
the mathematical concept and the natural one leads to obstacles in the use of the 
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mathematical concept. An epistemological analysis [Deloustal, 2000] enabled us to 
distinguish three points of view on the implication : formal logic point of view, 
deductive reasoning point of view, sets point of view. 

Of course, these three points of view are linked and their intersections are not empty. 
We will not develop here the formal logic point of view (for example truth tables or 
formal writing of the implication). 
We call "deductive reasoning" the structure of an inference step : "A is true ; A 
implies B is true ; Thus B is true". Its ternary structure includes a premise "A is true", 
the reference to an established knowledge "A � B" and a conclusion "B is true" 
[Duval, 1993, p 44]. The reference statement may be a theorem, a property, a 
definition, etc. One thus builds a chain of inference steps : the proposition obtained as 
the conclusion of a given step is "recycled" as the entrance proposition of the 
following step. Therefore, in the deductive reasoning, the implication object is used 
only as a tool. However, in French secondary education, where this point of view is 
the only one, it often acts as a definition for the implication. 
Generally speaking, having a sets point of view, means to consider that properties 
define sets of objects : to each property corresponds a set, the set of the objects which 
satisfy this property. The sets point of view on the implication can then be expressed 
as follows : in the set E, if A and B are respectively the set of objects satisfying the 
property A and the set of objects satisfying the property B. Then, the implication of B 
by A (i.e. A � B) is satisfied by all the objects of the set E excluded those which are 
in A without being in B, i.e. by all the objects located in the area shaded here after. 
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Figure 1 

RESEARCH HYPOTHESIS 
The experiments carried out for three years, within the framework of our research, 
have shown that the implication was not a clear object even for beginner teachers. 
Moreover, they showed that, contrary to a widespread idea, a logic lecture is not 
enough to get rid of these mistakes and difficulties. 
Following these comments, we formulate the research hypothesis : it is necessary to 
know and establish links between these three points of view on the implication for a 
good apprehension and a correct use of it. 
In the following paragraph we show that a problem on written proofs, using only easy 
properties, may question the reasoning in a non obvious way.  

CONDITIONS OF THE EXPERIMENTATION 
The problem we present results from an experimentation carried out in 2001 with 
beginner teachers of mathematics. We worked with two groups of approximately 25 
students at the IUFM1 of Grenoble and Chambéry (France). This experimentation 
includes two three-hour-sessions on the proof and, in particular, on the implication. 
The first session contained two problems (one in geometry, one on pavings), the 
second one proposed a work on written proofs. For each meeting, a work by groups 
of three or four people was following an individual work to allow questionings and 
discussions. We presented, in PME 26, a problem of geometry resulting from the first 
session. We present, now, a problem on proofs, following the previous one. 
Before beginning the analysis of this new problem, we want to remind the reader of 
the problem the beginner teachers had to solve in the previous session : 
Let ABCD be a quadrilateral with two opposite sides having the same length. What 
conditions must diagonals satisfy to have : (P3) two same-lengthed other sides ?2

PRESENTATION OF THE PROBLEM  
Here is the new problem as we gave it to the students: 
Let us remind the previous problem : 
Let ABCD be a quadrilateral with two opposite sides having the same length. What 
conditions must diagonals satisfy to have : two same-lengthed other sides3 (P3) ? 
A necessary and sufficient condition is : “the diagonals cut in their middle” (We call it C1) 
What do you think about the following dialogue ? 
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X : Look, the condition “one of the diagonals cuts the other in its middle” is maybe also a 
necessary and sufficient condition ? (We call it C2) 

Y : Impossible, since this condition C2 is strictly weaker4 than the other (C1). 

MATHEMATICAL ANALYSIS OF THE TASK 
Let us call Q: the set of quadrilaterals ; H: the set of quadrilaterals with two same-
lengthed sides (H: the property of having two same-lengthed sides) ; NC: the set of 
non crossed quadrilaterals ; Cvx: the set of convex quadrilaterals. 
Discussion between X and Y 
The argument of Y is not a valid argument. Indeed, two conditions can be equivalent 
on a subset even if they are not usually equivalent. For example, in the set of 
parallelograms, the condition “having one 90 degrees angle” is equivalent to the 
conditions “having four 90 degrees angles”. 
In this problem, C1 could be equivalent to C2, to deny it one must prove it is false on 
the mathematical objects. Under a logical point of view Y is wrong. 
Implications between C1 and C2 
We can translate the first question (from X) by: “ In the subset H, is the equivalence 
C1� C2 true ? ” or “ Is the equivalence [C1 and H] � [C2 and H] true ? ” 
In our problem, there is no equivalence between C1 and C2. We present two counter-
examples, i.e. two quadrilaterals which satisfy H and C2 but not C1, figures 1 and 2.

Figure 2 Figure 3 

In this paper, we have no time to describe the set in which the two conditions are 
equivalent. But, we can notice that it is an interesting question for the beginner 
teachers who want to solve the problem. 
Set of objects satisfying H and P3 
To allow the reader to tackle the problem with the same knowledges as the beginner 
teachers, we give the solution of the previous problem. We do not detail it for lack of 
time but the reader can convince himself easily. 
The objects satisfying both H and P3 have two same-lengthed sides and two other 
same-lengted sides, we have then the equivalence: 
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H and P3 �  Parallelogram   OR   Crossed Quadrilateral called CQ [figure 4]

Figure 4 
Implications between C1 and P3 
In our problem, the assertion “A necessary and sufficient condition is that the 
diagonals cut in their middle ” is false. Indeed, in the set H, C1 is not a necessary 
condition to P3, since C1 is equivalent to the condition “to be a paralellogramm”. 

        Parallelogram      �  C1 (diagonals cut in their middle) 
H and P3 �       or 

       Crossed Quadrilateral (CQ) 
That is to say that, in H, C1 implies P3 (C1 is sufficient for P3), but P3 does not 
imply C1 (C1 is not necessary for P3) as shows the counter-example (CQ). 
On the other hand, if we place the problem in the set NC (non crossed quadrilaterals), 
there are then the equivalences : H and P3  � Parallelogram � C1. That is to say, in 
the set H � NC, C1 is a necessary and sufficient condition for P3. 
Implications between C2 and P3 
According to what we said previously, in H � NC, there are the implications:  
H and P3 � C1 � C2, that is to say that C2 is then necessary to P3 but not 
sufficient as shown by the counter-examples figures 2 and 3. 

DIDACTICAL ANALYSIS OF THE SITUATION 
We present now the choices we made for this problem in terms of didactical 
variables. A didactical variable (DV) is a characteristic of a problem likely to 
involve, according to the values alloted to it, various strategies of resolution by 
students. All the variables of a problem are not didactical variables, the various 
strategies involved must be really different compared to the aimed learning. We want 
to show the variables wich allow a work on implication and especially those linked to 
the three points of view.
General choices 
DV1: Mathematical framework for the problem 
First of all, we choose, for our experimentations, very easily accessible mathematical 
concepts. Indeed, our hypothesis is that to see a work on the reasoning there must not 
be difficulties linked to a mathematical concept, to be able to distinguish difficulties 
due to the concept of implication. In this problem, there are only mathematical 
notions well known by students such as quadrilaterals, parallelograms, diagonals... 
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Moreover, we chose to place this problem within a geometrical framework. Another 
problem of our experimentation concerns pavings, it is easily accessible and is 
appropriate as for previous requirements. But we wanted to show them, since they are 
teachers, that even with a taught concept, like geometry, pupils can study the 
reasoning in a non usual way. 
DV2: Practical organization of the session 
Our hypothesis is that a research in groups is necessary for our problem. That allows 
a confrontation between the various points of view, in particular logical and 
deductive reasoning points of view. Furthermore, it stimulates discussions. 
Nevertheless, the first individual work gives to each one time to have his own idea 
about the problem. These various ideas will feed discussions. 
Choices for this situation 
DV3: point of view on the implication 
Our hypothesis is that, to allow discussions, the problem must be in a mathematical 
context and not only in a logical one. Indeed, our previous experimentations with 
university students have shown that logical knowledges can coexist with false 
conceptions on implication. That is to say that, in case of a problem in an only logical 
context, all students could agree on the right solution without showing any difficulty. 
Therefore, we chose to place our question in a geometry context, in order to confront 
the formal logic point of view and the deductive reasoning point of view. However, 
since beginner teachers have studied the problem during the last session, we do the 
hypothesis that the difficulties of geometry should not be an obstacle to the 
discussion.
We want to know if, within the framework of a proof in geometry, the students are 
able to work only under one logical point of view without using mathematical 
properties. In response to our questioning, we will thus distinguish three types of 
answers:
The first one based on logical point of view: Y is wrong, this can be possible. 
The second one linked to the mathematical contents: Y is right, in the subset H of this 
problem, C2 is not a sufficient condition for P3. 
The third one is a combination of both, the strategy can use the deductive reasoning point of 
view and the logical one. That can possibly call into question the formal logic point of view. 

Besides, to refute the argument of Y, properties of sets might be used. Our hypothesis 
is that some easy counter-examples (like: in quadrilaterals, to have three 90 degrees 
angles is equivalent to have four 90 degrees angles) will convince more easily than 
theoretical speech which will thus be less likely to appear. 
DV4: value of truth of the starting assertion 
The assertion “A necessary and sufficient condition is that the diagonals cut in their 
middle” is false in the set of quadrilaterals but true in the subset of non crossed 
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quadrilaterals. Our hypothesis is that it compells students to take into account crossed 
quadrilaterals as soon as they leave the strict framework of formal logic. Crossed 
quadrilaterals are hardly ever taught in France, and we have shown in a previous 
experimentation that their presence enhance strategies based on sets point of view. 
DV5: value of truth of the assumption of X 
Our hypothesis is that, in order to confront the formal logic point of view and the 
deductive reasoning point of view, it is necessary that they give conflicting answers. 
Indeed, if both points of view say that X is right, then no discussion can take place. 
This is why we chose that the assumption of X is false from the deductive point of 
view whereas this argument could be valid from the formal logic point of view. 

SOME RESULTS 
Whereas the study of this experimentation is not finished, we can present right now 
some results and transcripts. 
First of all, we can assert that a work on reasoning and implication was done. Indeed, 
no group found the problem obvious, they have all studied it during a long time. But, 
on the other hand, no group was stopped by difficulties of a mathematical nature. 
There were discussions, even though the mathematical objects were very well known. 

Robert: It is an exercise which, as a teacher, I would not give before university. 

There was really a confrontation between the formal logic point of view and the 
deductive reasoning point of view in a lot of groups. In most of these groups, even 
when they agreed the logical answer, they used the mathematical properties to search 
whether X is right or not. 

Paul : Y says that if a condition is removed, it is not necessary any more, I do say it can 
remain necessary if it is already checked in the hypotheses. 

But the group do not agree this ensemblist argument and keep searching implications 
between properties. Few minutes later, Paul convince them with a counter-example: 

Paul: In the parallelograms, the condition “four 90 degrees angles” is necessary to be a 
rectangle but the condition “one 90 degrees angle” is necessary too. 

This argument accepted, the group wants to know if X is right. After a few counter 
examples, they conclude showing that they distinguished well the logical reflexion 
and the mathematical reflexion. 

Robert: X is wrong but the argument from Y is false. 

Finally, we have seen marks of the three points of view. The sets point of view was 
also used in this task as shows Armelle’s argument. 
To show to her group that Y is wrong, Armelle draws three “potatoes” (i.e. sets), P,
C1, C2 so that, in the set P, the sets C1 and C2 are equal, whereas outside P they are 
different. This is a theoric counter-example to the affirmation from Y, yet the group 
accepts it only at the last minute. 



www.manaraa.com

2–270  PME28 – 2004

CONCLUSION
The analysis of the students' answers is still in progress. However, we can already say 
that the exercise fulfiled its role, as for the work on the implication since all groups 
have worked at least one hour on this problem.  In addition, the three different points 
of view appear, implicitly or explicitly, in most groups. In particular, the sets point of 
view, which is not taught in france, appears many times. This is why we can do the 
hypothesis that the work, on this point of view, made at the time of the preceding 
meeting was used again.  
These results are to be placed among others. Indeed, this problem forms part of a six 
hour experimentation on implication and reasoning. It includes other stages of work, 
in particular, other studies of written proofs, one problem of geometry and one 
problem in discrete mathematics. Moreover, this experimentation takes sense when 
one knows that it was preceded by two others, carried out in 1999 and 2000.This 
problem is, thus, to consider as part of a broader context.
                                          
1 Institut Universitaire de Formation des Maîtres (University Institute for the Formation of the Teachers) 

2 There were two other questions : (P1) two other parallel sides ?  (P2) two 90 degrees angles ?  

3 not necessarily the same one as the two precedents, this was specified orally. 

4a condition A is weaker than a condition B if the implication B � A is true, i.e. if the set linked to the property B is 
included in the set linked to the property A. This expression is commonly used in french mathematics. 

References 
Brousseau, G. (1997) Theory of Didactical Situations in Mathematics (translated and edited 

by N. Balacheff, M. Cooper, R. Sutherland, V. Warfield), Kluwer Academic Publishers. 
Chevallard, Y. (1992) Concepts fondamentaux de la didactique : perspectives apportées par 

une approche anthropologique, Recherches en Didactique des Mathématiques, 12(1). 
Deloustal-Jorrand, V. (2000) L'implication. Quelques aspects dans les manuels et points de 

vue d'élèves-professeurs, Petit x n°55, éd. IREM de Grenoble. 
Deloustal-Jorrand, V. (2002). Implication and mathematical reasoning. 26th Conference for 

the Psychology of Mathematics Education, Norwich.
Douady, R. (1985) The interplay between different settings. 9th Conference for the 

Psychology of Mathematics Education, Noordwijkerhout.
Durand-Guerrier, V. (1999) L'élève, le professeur et le labyrinthe, Petit x n°50
Duval, R. (1993) Argumenter, démontrer, expliquer: continuité ou rupture cognitive ?, Petit

x n°31
Rolland, J. (1998) Des allumettes aux polyminos : incursion des mathématiques discrètes en 

classe de 3ème ?, Petit x n°49.
Vergnaud, G. (1988) Theoretical Frameworks and Empirical Facts in the Psychology of 

Mathematics Education, VI° ICME Congress, Hungary. 



www.manaraa.com
Proceedings of the 28th Conference of the International  
Group for the Psychology of Mathematics Education,  2004 Vol 2 pp 271–278

FROM SINGLE BELIEFS TO BELIEF SYSTEMS:  
A NEW OBSERVATIONAL TOOL 





Two of the greatest problems of research on affective factors, and in particular, 
research on beliefs, is  and  we observe. The first difficulty is due to  the lack 
of a clear terminology; but even once it has  been clearly decided what to observe, it 
is not easy to put this into practice. This report describes from a theoretical point of 
view the results obtained using a new questionnaire appositely designed to overcome 
some critical points of beliefs’ observation. 
INTRODUCTION
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In mathematics there is always a reason for everything 
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open questions without an answer   
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ASSESSMENT AS A STRATEGIC TOOL FOR ENHANCING 
LEARNING IN TEACHER EDUCATION: A CASE STUDY 

Brian Doig and Susie Groves 
Deakin University 

This small exploratory case study describes an attempt to integrate the academic and 
practical aspects of a teacher education course in order to promote deep 
understanding of children’s ways of understanding mathematics. The assessment 
regime of the course was used as a strategic tool for engaging students, and the 
assessment tasks themselves were used as the means of generating genuine 
integration, or case knowledge, of the content of the course. The results indicate that 
the approach was effective in achieving the aims of the course, and student reaction 
to the approach was extremely positive. 

INTRODUCTION
It has been argued that integrating the academic and practical aspects of teacher-
education courses can promote more effective learning by children (Even, 1999). 
That is, teachers who have had the opportunity to make meaningful connections 
between research and their classroom-based experiences, develop deeper 
understanding of children’s ways of thinking about their mathematics. In Even’s 
(1999) study, teachers conducted a mini research project as part of a professional 
development program, and their written reports of the research project helped them to 
reflect on their experiences, generating “genuine integration of knowledge learned in 
the academy and that learned in practice” (p. 250). These two forms of knowledge 
have been defined by Shulman (1986) as propositional or declarative knowledge that 
is hard to be applied and used, and case knowledge that makes propositions real, and 
embeds them in context:  

Case knowledge is knowledge of the specific, well documented and richly described 
events. Whereas cases themselves are reports of events, the knowledge they represent 
is what makes them cases. The cases may be examples of specific instances of practice 
— detailed descriptions of how an instructional event occurred — complete with 
particulars of contexts, thought and feelings. (p.11) 

It is the integration of these two forms of knowledge that we want our teacher 
education students to achieve.
McInnis and Devlin (2002) state that good assessment at the tertiary level has three 
objectives:

1. It guides and encourages effective approaches to learning 
2. It validly and reliably measures expected learning outcomes 
3. It defines and protects academic standards.  
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We believe that if the emphasis of the assessment regime is on the construction of 
case knowledge rather than on summative or grading practices only, then assessment 
can be used as a strategic tool for helping students engage with a course in a 
meaningful and integrated way, We argue that this focus constitutes good assessment 
practice at any level, including tertiary education. 
In this paper we present a description of a small exploration of an approach that 
parallels Even’s (1999) study, and in addition, uses assessment as the strategic tool 
for promoting more effective learning as suggested by McInnis and Devlin’s (2002) 
first objective. 

BACKGROUND
This paper describes an innovative approach assessment used in the first mathematics 
education unit undertaken by primary teacher education students. This one semester 
unit, Children and Mathematics: Developing Numeracy Concepts, has a focus on the 
early years of school, and aims to “promote students’ understanding of how 
children’s mathematical concepts develop … in number and measurement” (Deakin 
University, 2003, p. 351). The unit provides students with the opportunity to engage 
with young children, examine their mathematical developmental, and consider ways 
of providing effective learning experiences.  
The unit content is presented in lectures that include relevant video excerpts and 
discussions led by mathematics education staff. The lectures are supplemented by 
tutorials in which students engage in practical tasks and discussion related to the 
content of the lectures. The assessment tasks for the unit are a team-based written 
report on the analysis of children’s responses to a mathematics interview, an 
individual response to providing appropriate learning experiences for children, and a 
written examination on both the content and pedagogical knowledge presented during 
the unit. 
An assessment task used for many years in a similar course was a student interview 
of two four- or five-year-old children about their number development using an 
interview that included a Piagetian number conservation task. A written report of the 
analysis of the children’s responses to this interview formed part of the assessment 
requirements, while a verbal report on the interview tasks and findings was presented 
in tutorials, with discussion focused on interesting similarities and differences in the 
results.
The strength of this assessment task was that it demanded the integration of the 
academy (the lectures and tutorial content) and the practical (the interviews with 
children), although the extent of the integration was bounded by the students’ 
engagement with the written report and their participation in follow-up class 
discussion. The weakness in this task lies not in the task itself, but in its relationship 
with the other academic and practical aspects of the unit content. For example, later 
content examined children’s numerical development in more sophisticated aspects of 
mathematics such as operations with numbers and algorithms.  
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SHIFTING THE FOCUS 
In 2003 for the first time this unit Children and Mathematics: Developing Numeracy 
Concepts was provided for 180 primary teacher education students on the Melbourne 
campus of Deakin University as well as to students who were attending other 
campuses of the university. This paper refers only to the implementation of this unit  
on the Melbourne campus. 
As part of the development of this unit, the nature and role of assessment tasks were 
designed to act as a strategic tool for enhanced learning. An examination remained, 
but an interview and team-based written report were combined with the individual 
written description of appropriate learning experiences. The first task, the interview, 
was to take place while students were on a practicum placement in a primary school. 
As in previous years the interview had a focus on number. While we are aware of the 
difficulties for an untrained teacher when acting as a clinician, the highly structured 
interview protocol and its response format was considered robust enough to generate 
reliable data for the purposes of this assessment task (see, for example, Hunting & 
Doig, 1997; Haydar, 2003, on the value of training in clinical interviewing). 
The first assessment task 
The outline of the first assessment task to the students was similar to the description 
that follows: 

This is a team-based assignment with a focus on children’s number development. 
You will form a Team that consists of four students, where one member of the Team 
will interview at each of the four year levels (Prep, 1, 2, or 3). Each member of the 
team will conduct an interview with two children from the same year level. The 
Team will thus have interview records from two children from four year-levels, a 
total of eight interview records. Teams will write a team report that includes an 
analysis and discussion of the development of children's number understandings as 
evidenced by the data that they have gathered across the year-levels.
The Team’s data and report will be entered on to a database via a web site. The 
contents of the database will be available to students for use in the second 
assessment.  
The Team report must indicate what the Team considers to be the main findings of 
their analysis of their combined data; and the implications of their findings. Team 
reports must be linked to the evidence gathered.  

There are two points to note here: first, the focus is on the team and the analysis and 
discussion of the team’s data, not the individual student’s data. This places 
responsibility on students for conducting interviews and reporting accurately. 
Secondly, the use of the combined data allows the students to examine the 
development of children’s mathematics over four years and not, as previously, within 
a single year level. This mirrors the academic content presented later in the unit that 
examines children’s longer-term development. The requirement that the team’s report 
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focus on the implications of the findings was a further step towards integration of the 
academic and the practical. 
The format of the team reports was a poster that had a printed copy of the data 
attached, thus allowing a reader to see a reduced version of all the data, grouped into 
eight themes by content type (for example, numeral recognition, place value), 
together with written comments highlighting the implications of the findings. The 
posters were displayed for all students to read and follow-up discussions were held in 
tutorials, using the posters shown below in Figure 1 as aids. 

Figure 1: Team posters reporting interview data and analysis 
We agree with Crespo and Nicol (2003) that discussion springing from student-
teacher interviewing provides insights into their underlying beliefs about teaching. 
For example, during follow-up discussions in tutorials some students were surprised 
to hear that there were children who were able to respond correctly to items beyond 
those expected by the curriculum. The response of some of these students was that 
the teachers, or parents, were ‘pushing the children’, the implication being that this 
was not a good practice. Other students responded quite differently, suggesting that 
these ‘advanced’ children must be attending private (non-government) schools, 
apparently implying that these schools were also ‘pushing’ the children. Other 
students suggested that as the children could respond correctly, then the mathematics 
was not beyond them at all. The discussion regarding this ‘pushing’ was lively, and 
students were able to draw on the data collected by themselves and their peers to 
support their points of view. 
Tutorial discussion also raised issues that sparked interest. For example, a common 
finding in the data of many groups was that the Year 1 children frequently achieved 
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better than the Year 2 children. As this appears to be the case for children from 
different schools and areas of the city, this was seen as a real trend and generated 
many hypotheses as to its likely cause. 
The tutorial discussions also revealed some of the students’ own problems in 
mathematics. For example, discussion of the question “Which is larger, –7 or –4?” 
revealed that for some students the value of the digit identified the correct answer. 
During discussion it became apparent that students’ analogies for working with 
negative numbers, as learnt in school, were sometimes misleading or erroneous. 
A second point to note in the description of this assessment task is the requirement 
that children’s responses to the interviews be entered onto a data-base for use in the 
second assessment task. This requirement was facilitated by two aspects of the poster 
format of the report. First, all interview items and (where applicable) correct 
responses were available to the students in electronic format for entering children’s 
responses and printing a copy to form part of the poster. 
Thus the entire data-set of responses from approximately 360 children, 90 at each of 
the four levels Prep, Years 1, 2, and 3, were available to one of the authors, who 
randomly selected sets of 30 children’s responses to form four virtual classes (a Prep, 
a Year 1, a Year 2, and a Year 3). These four virtual classes provided the following 
details for each child in the virtual class: a pseudonym, sex, age, and all their 
interview responses. These virtual class details were provided on a web-site for 
student access. Down-loading their chosen class gave students access to the data on 
every child in the selected virtual class as collected by the students in their first 
assessment task. 
The second assessment task 
The second assessment task built upon the first in two distinct ways. The obvious 
way is the use of the virtual classes, based on the responses from the interviews of the 
first assessment task, as described. The second, less obvious, way, is that it required 
students to use their knowledge of children’s mathematical understandings across 
year levels developed by the first assessment task, integrate it with their 
understanding of the content of the lectures and tutorials during the unit, and apply 
the resulting case knowledge. That is, the integration of the academic knowledge with 
the practical experience is embedded within the second assessment task by the 
requirement that students address the mathematical needs of children within a 
selected virtual class and adopt the role of a teacher of real children who have real 
mathematical needs. 
The details of the second assessment task were

This assignment is meant to give you a taste of creating focused, appropriate learning 
experiences for a whole class, or a small group within the class. There are several 
options for you to choose from, and these are set out below. First you must select the 
year level that you wish to have as your virtual class. Perhaps the level that you 
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worked in during your placement could make life easier, as the context may be more 
familiar to you.
Remember that the interview tasks run beyond what we would reasonably expect of 
Year 3s in order to ‘capture’ those children who are working beyond the usual. So, you 
are not expected to plan experiences to cover all the interview tasks, simply those you 
consider to be most critical for your children. 
Option 1 
Look at your class. Think about whether there is an identifiable group of 4 or 5 
children with a similar mathematical need; and if there is, you may want to focus on 
that need for these children. You must select and describe 3 to 4 tasks addressing the 
mathematical needs of this small group if you choose this option. 
Option 2 
Look at the range of abilities, described by the responses to the interview tasks, across 
the whole class. Look at the least capable and the most capable children. Can you plan 
a single experience for this ‘spread’ of capabilities? For this option, you will need to 
select and describe one task addressing the mathematical needs of all the children. The 
task should be one that the least able children can tackle successfully, but also one that 
is open to extension for the more capable in the class; this sort of task is often termed a  
‘ramped’ task as it goes ‘up’ in difficulty and the children are able to continue 
exploring it as far as their ability will allow. 
Specific questions 
Once you have the topic and the children sorted out you should address the questions 
below to complete the main body of your assignment. The questions to answer are: 

1. What are the mathematical learning needs of your selected children? 
2. What tasks were surveyed, and from what sources? 
3. What mathematics do the selected task(s) deliver? 
4. How will you know if the tasks have achieved your aims? 
5. What have you learned from this assignment? 

Student responses to this second assessment task were, as expected, mainly positive 
with some themes evident across many of the responses to a particular question. 
These themes related particularly to Questions 2, 4, and 5.  
The most common sources of information for responding to Question 2 were 
educational Internet sites. Many of these sites were North American in origin, and 
students modified and adapted the information to suit local curriculum and 
conventions. It appears that the Internet is replacing the photo-copiable worksheet 
book as a major resource in primary classrooms. Another source, that was cited 
frequently, was the teacher in the class where the first assessment task (the numeracy 
interview) had taken place. 
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Surprisingly, responses to Question 4, that focused on assessing the effectiveness of 
one’s teaching, seldom involved re-using the interview items that had revealed the 
original strength or weakness. Most responses considered that success on the selected 
‘new’ task was sufficient to establish effectiveness. While this is in part true, the re-
use of the interview items would seem a more reliable and valid approach to this 
question.
The final question of this assessment task was designed to provide students with a 
space in which to reflect on their experience and there were strong themes in the 
responses. One of these themes centred around the reality of the task, with this task 
compared favourably to other assessment tasks in the students’ course that were 
considered not as relevant to their futures as teachers. Another common theme was 
the students’ realization of the difficulty of finding and selecting tasks suitable to 
address particular needs. Comments focused on the length of time needed to find and 
select such tasks, as well as the time needed to unpack the mathematical content of 
many tasks. Comments on the low quality of many Internet sites were also common.  
Student reactions to the two assessment tasks overall were very positive. Comments 
from students revealed that the workload was reasonable, the use of groups and 
posters was an engaging way to respond to tasks, and that re-using the interview data 
was a sensible and useful exercise. In particular, students commented on the re-use of 
the data as providing a familiarity that made the second assessment task less 
daunting, although many students wondered whether they would have enough time to 
do this type of task properly in a real classroom. 

DISCUSSION 
There are many facets to this exploratory case study but two aspects are of most 
interest here. The first is the effects of integrating the academic and practical aspects 
of a teacher education course in order to promote deep understanding of children’s 
ways of understanding mathematics. The modifications to the assessment regime of 
the course were made in order to ensure that assessment would act as a strategic tool 
for engaging students, and promote such integration as an integral part of the course. 
This was accomplished by the two-fold use of the same data: in the first instance for 
examining children’s development across the years, and in the second, to conduct a 
more detailed examination of the variation in children’s needs at one year level.
The success of this strategy can be established by reference to student responses to 
the assessment tasks themselves, and their comments in their unit evaluation surveys 
(an obligatory part of the teaching process). While many of the comments were 
typical of student comments everywhere, with complaints about early morning 
lectures, too much content to be learned, and praise for particular aspects of the unit, 
a large number of comments were related to the professional aspects of their 
experience in this unit. These comments focused on those aspects of the unit that we 
believe were critical to achieving our aim of integrating the academic



www.manaraa.com

2–286  PME28 – 2004

and practical, and that built a strong relationship, between the unit content and 
assessment, and the students’ own case knowledge and professional preparation. We 
believe that such integration of the different knowledge forms is a basis for a 
teacher’s professional practice and should be the aim of all teacher education courses 
Students’ reflective comments indicated that there was sufficient evidence for 
continuing to use assessment as a strategic tool for integrating the academic and the 
practical, and that these students were building a reflective approach to teaching 
mathematics likely to promote effective mathematical learning experiences for 
children..
A further outcome of this study is that it raises the issue of Shulman’s case 
knowledge and its place in teacher-education. Clearly case knowledge represents an 
ideal for student outcomes in this context, and the attempt described here shows a 
possible way forward in achieving this goal. It is hoped that the more detailed study 
underway at present will reveal more clearly those features of assessment as a 
strategic tool that are critical to achieving our goals.
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In this paper we report on some patterns of reasoning, which emerged during an 
activity of proving a mathematical statement performed by nine grade and university 
mathematics students. The statement in question involves drawing figures, working in 
arithmetic and in algebra. As for secondary students we detected fluency, flexibility 
and ability of verbalizing their reasoning. In particular, we will focus on the behavior 
of a student who through drawings succeeded in giving meaning to algebraic 
manipulation. The solutions of the university students were conditioned by the burden 
of the formal style used in university course of mathematics.

INTRODUCTION AND THEORETICAL FRAME 
In works presented in PME meetings, see (Furinghetti & Paola, 2003), and in 
journals, see (Furinghetti, Olivero & Paola, 2001) we have focused on patterns of 
reasoning emerging when students are involved in activities of exploring, producing 
and validating conjectures. To rouse motivation and non-routine behaviors we set 
these activities in stimulating contexts such as group working, classroom discussion, 
and use of technology. In the present paper we go on in our investigation on patterns 
of reasoning by studying the results of an experiment in which proof was proposed as 
an intellectual challenge. In history this challenge has been fundamental for 
producing of new mathematical ideas and some authors, (De Villiers, 1996) for one, 
think that even nowadays it may be a motivation in classroom. The aim of the study 
is twofold: • as researchers in math education to collect information about students’ 
reasoning, • as teachers or teachers educators to outline some didactical implications. 
In our investigation we had in mind certain aspects of students’ reasoning to be 
analyzed, which guided the choice of the statements to be proved. In the following 
we briefly discuss these aspects. One of the driving forces in performing 
mathematical tasks is transformational reasoning. According to (Simon, 1996) 
transformational reasoning is a third type of reasoning (beyond deduction and 
induction), which is not a mere gathering of information, but rather the development 
of a feeling for the mathematical situation a person is facing. It is the realization 
(physical or mental) of an operation or a set of operations on objects that brings to 
reconsider the transformations which the objects undergone to and the results of that 
operations. In transformational reasoning it is central the ability to consider not a 
static state, but rather a dynamic process in which a new state or a continuity of states 
are generated. Transformational reasoning is reasoning by analogy and anticipation. 
It may produce a different way of thinking to mathematical objects, as well as a 
different set of questions and problems. Transformational reasoning is enhanced by 
fluency and flexibility, that is to say the abilities to overcome fixations in 
mathematical situations and to produce creative thinking within mathematical 
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situations, see (Haylock, 1987). Gray & Tall (1994) focus on the flexibility as a mean 
for linking processes and concepts. 
Among the abilities necessary to mathematical activities Selden and Selden (1995) 
take into consideration concepts reformulation. When a statement to be proved is 
given, the solver firstly needs to understand it. This may happen through 
reformulating the statement by paraphrase with words, by gestures, by figures, by 
symbols, by the production of examples. Among proving difficulties Moore (1994) 
considers the generation and the use of examples. Examples may work as prototypes, 
but have not to become stereotypes, see (Presmeg, 1992). In the examples the solver 
has to develop a process of abstraction and generalization, that is, borrowing the 
expression from (Mason & Pimm, 1984) “seeing the general in the particular”. 
A student’s behavior in proving may be analyzed according to the framework of 
proof schemes defined by Harel and Sowder (1998) as what constitutes ascertaining 
and persuading for a student. The proof schemes are grouped in three main classes: 
• external conviction (three types: ritual, authoritarian, symbolic) 
• empirical (two types: inductive, perceptual) 
• analytical (two types of proof schemes: transformational, axiomatic). 
A ritual proof scheme manifests itself in the behavior of judging mathematical 
arguments only on the basis of their surface appearance: false arguments are accepted 
because they look like usual proofs, and on the contrary justifications that are even 
convincing are rejected because “they don’t look as mathematical proofs”. In a 
symbolic scheme mathematical facts are proved using only symbolic reasoning, i.e. 
using symbols without reference to their meaning. An authoritarian proof scheme 
relies on the authority of someone (book, teacher). An inductive proof scheme relies 
on few examples without generalization. A perceptual proof scheme is based on 
rudimentary mental images without resorting to deduction. A transformational proof 
scheme encompasses a deductive process including generality, goal-oriented and 
anticipatory mental operations, and transformational images. In addition to that an 
axiomatic proof scheme contemplates the presence of an axiomatic system. 
According to Rodd (2000, p.231) the following questions are crucial: “(b) What is the 
personal nature of proof? […] Or why are students’ personal justifications different 
from the paradigmatic mathematical proof? […], And (c) What might warranting 
mean in classroom practice?” These issues are discussed in (Hanna, 1990; Hersh, 
1993) as for students and mathematicians, Barbin (1988) as for the history. 

METHOD 
Our experiment took place in two different settings (setting A: secondary school, 
setting B: university). A set of problems centered on proof was given to students. The 
students knew that their performance would not be assessed with a mark. They were 
only asked to engage as much as possible in the solution of the problems and to write 
all their thoughts during the solution. We also asked them to write the difficulties 
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encountered and if they enjoyed the problems. All students signed with a pseudonym 
their protocols. In the present paper we will focus on the following problem: 

Given a cube made of little cubes all equal, take away a full column of little cubes. The 
number of the remaining little cubes is divisible by six. Try to explain why this happens. 

It has had been chosen according to the following requirements: 
• it is expressed by words 
• it involves concepts that are at the grasp of the students 
• it does not involves only rote manipulation, but rather requires to look at algebraic 

formulas with meaning and awareness 
• even if the property to be proved is given, the form of the statement (which includes 

the invitation “Try to explain…”) fosters exploratory activity and the devolution of 
the teacher’s authority to the students, as it happens in the case of open problems 

• the statement requires to consider different aspects: geometrical and visual (the cube 
formed by little cubes), the numerical aspects (divisibility by six), symbolic (the 
formulas which express the number of remaining cubes and the algebraic 
manipulation on them). Thus the students have to use different frames and to pass 
from a frame to another 

• it is not similar to statements proved by the students in other circumstances, thus 
students are stimulated to find their own way. 

The setting A (secondary students grade nine) 
In secondary school 18 students of grade nine (aged about 14) faced the problem in 
question. They had worked before in collaborative groups and thus we allowed them 
to work in group. The students were used to be involved in activities of exploration, 
production and validation of conjectures. In particular, they were able to perform 
these activities with the symbolic pocket calculator. The classroom was really a 
community of practice, as advocated by (Schoenfeld, 1992). The allowed time was 90 
minutes. In the first 15 minutes the students were asked to work individually on the 
problem before starting the work in group. This splitting in two phases was decided 
because it happens that without an initial phase of personal reflection the interaction 
in the group may be only apparent and some members of the group follow passively 
the solving strategies proposed by their mates. During the work the teacher and the 
observer were at disposal of students for giving explanations and to foster the 
exploration. At the moment of the experiment the students did not know the algebraic 
manipulation of formulas, but they had used regularly the symbolic calculator; they 
mastered the commands Factor and Expand. The command Factor, indeed, has been 
used before only for decomposing numbers, but it was easy to extend this use to 
algebraic formulas. To have at disposal the calculator allowed keeping the focus on 
the problem and not on ‘side issues’ such as algebraic manipulation. In our intentions 
the resulting atmosphere in the classroom should have been rather relaxed so that the 
moments of strong emotions for stops or failures should have been avoided or, at 
least, overcome through collaboration and communication. In this situation all 
students, even the weak ones, had the possibility of producing some materials. 
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The setting B (university students) 
The five university students participating to the experiment were attending the third 
year of the mathematics course. They had already passed examinations such as 
analysis, algebra, geometry, and topology. They worked alone and did not interact 
with the university lecturer and the observer. The allowed time was 60 minutes for 
the problem in question and another problem that we do not consider here. 

FINDINGS
The teacher or the lecturer (the authors D. P. in school and F. F. in university) 
together with an external observer (the author M. C.) assisted to the experiment. The 
data were collected through the students’ protocols and the observer’s field notes. 
Findings in the setting A (secondary students grade nine) 
We have at disposal 18 protocols coming from six groups. All groups, but one, 
reached the solution. In Fig.1 we report the cognitive pathway towards successful 
proof, which emerges from the protocols. 

reading the text

reformulation
numerical
examples

arithmetical
formula

algebraic
manipulation

verbalization
in arithmetic 

proof

drawing

Fig.1

Each step of the pathway requires a shift from one frame 
to another. The word ‘cube’ in the statement pushed 
naturally towards the representation of a cube in the flat 
sheet according to empirical rules of perspective 
(graphical frame). Through the drawing the statement was 
reformulated in a more telling way. After the exploration 
of the drawing the students used it as a starting point for 
producing a few numerical examples (arithmetic frame). 
The drawing worked as a generic example that allowed to 
generalize and to produce the solving formula n3-n.
Borrowing the metaphor from (Tall & Gray, 1994) we 
may say that the drawing plays the role of the pivot 
between the particular (numerical examples) and the 
general (formulas). At this point the shift into the algebraic 
context allowed obtaining the decomposition n(n-1)(n+1).
The conclusion was reached by verbalizing the property 
that the product of three consecutive numbers is divisible 
by six. 

To stress the importance and the peculiarity of the role plaid by the students’ drawing 
we consider the work of a group of three boys (Andrea, Luca, Simone) in which an 
interesting process was produced. They started by drawing a cube. Firstly they 
explored a cube formed by 33 little cubes and went on by alternating exploration of 
inductive type (the cases of cubes formed by 43, 53,… little cubes) with reflections on 
the particular case of the cube they had drawn. The drawing acted as a generic 
example. The exploration of particular cases went on also after the determination of 
the formula n3-n. The solving strategies were a continuous ‘come and go’ from 



www.manaraa.com

PME28 – 2004  2–291

consideration of concrete situations (particular cubes and calculation on them) to 
reasoning on formulas and attempts to write them in different ways. In this phase the 
teacher acted in the proximal development zone of Vygotskij (1978). He asked to 
students which ideas they were relating to divisibility. Simone mentioned multiples, 
Luca and Andrea decomposition. The new idea of decomposing n3-n came through a 
process by abduction, see (Otte, 1997). At this point the teacher suggested using the 
symbolic calculator to decompose the formula. Immediately after having obtained the 
decomposition x(x-1)(x+1) the students verbalized the solution: “Given three 
consecutive numbers at least one is even and one is divisible by three”. We note that 
the decomposition was written exactly as we reported (the name of the variable n was 
changed into x.) This was a spontaneous sign given by the students of their shift from 
the arithmetic to the algebraic frame.
Andrea, however, was not satisfied with this solution and looked for a different 
process. One of the reasons of this dissatisfaction could have been the fact that the 
solution was found through the teacher’s intervention and thus Andrea felt that he 
was not controlling the situation and needed to ‘take possession’ of the solution. He 
reflected on his drawing and we saw him to make gestures by hands, to think 
intensely until he found a new solution, based on the decomposition and composition 
of the original cube until a parallelepiped was obtained, see Fig.2. The teacher asked 
Andrea to write how he reached the new solution and why he looked for it. He wrote 
(for the reader convenience we have translated): 

I was not satisfied at all with the decomposition made with the symbolic calculator (I was 
thinking: Why I have not suddenly thought to the factorization?) [He is referring to the 
fact that before decomposing n3-n he worked a lot around the figure] and I was ‘looking 
at’ [The inverted commas are in Andrea’s text] the figure, partly to see that ‘monster’ and 
partly because I wished to find a geometrical proof [Andrea tries to give meaning to what 
is doing. He seems disturbed by the contamination between the geometric context of the 
problem and algebra]. Rather unconsciously - may be by vent - I started to strike off the 
column in question. When I saw the column struck off I realized that the two remaining 
columns should have been moved so that a rectangle [he means, indeed, a parallelepiped] 
is formed, which is high a column less (x-1), deep equally (x), and large one column 
more (x+1). Since the formula which gives the volume of the rectangle [parallelepiped] is 
b•h•p, I wrote x(x-1)(x+1), which was the same to the factorization of the calculator. To 
better understand my idea see the sheet [Fig.2] with the steps of the operation. 

The expression ‘to look at’ suggests that the student’s behavior is guided by ways of 
thinking oriented to the production of a proof. The process carried out by Andrea is 
mainly based on transformational reasoning. This reasoning was enhanced by three 
different kinds of signs used in an integrated way. We know that Peirce distinguishes 
among three kinds of signs: - icon, i.e. something which designates an object on the 
ground of its similarity to it; - index, i.e. something which designates an object 
pointing to it in some way; - symbol, which designates an object on the ground of 
some convention. Andrea uses all these kinds of signs in an integrated way. Initially 
the icon (drawing) is the way of paraphrasing the problem. The gestures by hands are 
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a means to enhance transformational reasoning. In the very words written by the 
student (“I would have wished to find a solution only with numbers”) we see that for 
him symbols hide meaning, while the drawing is a carrier of meaning. We note that 
the student operates on his drawing in a symbolic mode. He, indeed, manipulates the 
pieces of the cube as representatives of the algebraic symbols x, x-1, x+1.

Fig.2
The first mode of solution produced by the group of Andrea may be ascribed to an 
axiomatic-like proof scheme (they ‘derives’ that the number of the remaining cubes is 
multiple of six), while the second mode enacted by Andrea alone belongs to the 
transformational proof scheme (he ‘sees’ that that number is multiple of six). The 
discrepancy of schemes shown by this student is an evidence of a discrepancy 
between proofs which prove and proofs which explain, see (Hanna, 1990). We found 
interesting that in the group the two mates of Andrea acted in a different way. They 
both worked only inside the algebraic frame asking for formal aspects and avoided 
reference to concrete situations. 

Fig.3 x

 x
10/4

 10/4

The process conceived by Andrea has resemblance with the ‘cut and paste’ process 
realized by Al-Khwarizmi (1838) for solving second degree equations. In the case of 
the equation x2+10x=39 Al-Khwarizmi starts from a square of side x, sticks on the 
four sides four rectangles of sides 10/4 and x. He obtains a cross (see Fig.3) whose 
area is x2+10x (which is equal to 39). Four squares of side 10/4 are added to the cross 
to obtain the final square whose area (x+10/2)

2
 is equal to 39+4(10/4)

2
. By equalizing 
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these quantities the usual solving formula for second degree equations follows. Al-
Khwarizmi was interested only on positive solutions. 
Findings in the setting B (university students) 
We have at disposal five protocols. One student produced the solution in 10 minutes 
writing only seven lines. He did not draw any figure: he only reformulated the 
statement by words introducing the variable n for the number of the little cubes in the 
edge and then immediately generalizing the problem. Afterwards he wrote the 
solving formula n3-n, decomposed it and through verbalization proved the divisibility 
by six. The rapidity of the succession of steps shows a strong anticipatory thinking. 
The other four students followed a different pattern (more or less the same for all). 
They drew a cube with three little cubes in the edge and used it very easily as a 
generic example to produce the solving formula without the need of exploring other 
cubes or numerical examples. The divisibility by six was expressed by writing n3-
n=6q, q being a natural number. This formula is an example of formula which has not 
future, that is it is not “formally operable” in the sense of (Bills & Tall, 1998, p.105) 
since it is not easy to use it “in creating or (meaningfully) reproducing a formal 
argument”. One student was suddenly discouraged and stopped after just one attempt. 
Other students went into the tunnel of the ritual proof scheme. They acknowledged 
the status of real proof only to proofs that appear as the usual proofs they have seen 
in university courses. For this reason they did not consider verbalization as a means 
for proving. This pattern of reasoning is clearly evidenced in the protocol of the 
student G. After having wrote the formula n3-n=6q she decided to prove the statement 
by induction. We guess that this choice was inspired by the presence of the generic 
number n. She used properly the technique of induction and arrived at a statement 
requiring mere arithmetical considerations. At this point, since she had ‘paid her 
debt’ to the ritual aspect of formalism, she dared use verbalization (that she refused at 
the beginning) to conclude the proof. 

DIDACTICAL IMPLICATIONS 
The university students offer materials to answer the question “Why in education 
more does not always mean better?” The great amount of formal mathematical 
knowledge and the habit to use it as the only resource for doing mathematics has 
inhibited the ability to look for meaning in algebraic formulas. Our analysis of the 
secondary students’ behavior has evidenced many aspects. Here we stress the fact 
that the message of the teacher had different outputs even when the conditions were 
the same. We owe the opportunity to grasp this fact to the style of teaching in the 
classroom where the experiment took place. As told before, only one in a group of 
three students adopted the ‘cut and paste’ method, his two mates preferred to look for 
a formal approach inside the algebraic frame. The filter of the individual’s 
personality changes the way in which students perceive proof. The ascertainment of 
this fact brings to the fore the importance of studying the forms of classroom 
communication in relation with the different students’ needs. 
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GENERALIZED DIAGRAMS AS A TOOL FOR YOUNG 
CHILDREN’S PROBLEM SOLVING 

Barbara J. Dougherty and Hannah Slovin 
University of Hawai‘i 

Measure Up is a research and development project that uses findings from Davydov 
(1975) and others to introduce mathematics through measurement and algebra in 
grades 1–3. This paper illustrates the use of generalized diagrams and symbols in 
solving word problems for a group of 10 children selected from a grade 3 Measure 
Up classroom. Students use the diagrams to help solve word problems by focusing on 
the broader structure rather than seeing each problem as an entity in and of itself. 
The type and sophistication of the diagram can be linked to Sfard’s theory (1991 
1995) on mathematical development. The consistent use of the diagrams is related to 
students’ experience with simultaneous presentations of physical, diagrammatic, and 
symbolic representations used in Measure Up. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
Solving number sentences (equations) and word problems that involve number 
sentences is an area in early grades that often creates much difficulty for children. 
This may be related to children’s misconceptions about and misapplications of 
equations, including the use of the equals sign (Kieran, 1981, 1985, Vergnaud, 1985) 
or an inability to think beyond the literal word translations of the problem to see the 
more general structure. This phenomenon is likened to an intraoperational period 
(Garcia & Piaget, 1989) in that initially, students are solely concerned with finding a 
solution to a specific equation or problem and the equation is treated as an object that 
exists only to solve a particular problem. 
If children, however, are to make sense of generalized statements and classify 
problems into larger groups to create more efficient and robust methods of solving 
them, then a different approach to introduce problem solving might be considered. 
One such approach stems from the work of V. V. Davydov and B. Elkonin (Davydov, 
1975) and is embodied in Measure Up (MU), a project of the Curriculum Research & 
Development Group (CRDG) of the University of Hawai‘i.
Davydov (1975a) believed that very young children should begin their mathematics 
learning with abstractions so that they could use formal abstractions in later school 
years and their thinking would develop in a way that could support and tolerate the 
capacity to deal with more complex mathematics. He (1975b) and others (Minskaya, 
1975) felt that beginning with specific numbers (natural and counting) led to 
misconceptions and difficulties later on when students worked with rational and real 
numbers or algebra. He combined this idea with Vygotsky’s distinction between 
spontaneous and scientific concepts (1978). Spontaneous or empirical concepts are 
developed when children can abstract properties from concrete experiences or 
instances. Scientific concepts, on the other hand, develop from formal experiences 
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with properties themselves, progressing to identifying those properties in concrete 
instances. Spontaneous concepts progress from natural numbers to whole, rational, 
irrational, and finally real numbers, in a very specific sequence. Scientific concepts 
reverse this idea and focus on real numbers in the larger sense first, with specific 
cases found in natural, whole, rational, and irrational numbers at the same time. 
Davydov (1966) conjectured that a general-to-specific approach in the case of the 
scientific concept was much more conducive to student understanding than using the 
spontaneous concept approach.
Davydov (1966) wrote, “there is nothing about the intellectual capabilities of primary 
schoolchildren to hinder the algebraization of elementary mathematics. In fact, such 
an approach helps to bring and to increase these very capabilities children have for 
learning mathematics” (p. 202). Beginning with general quantities in an algebra 
context enhances children’s abilities to apply those concepts to specific examples that 
use numbers.  
Davydov (1975a) proposed starting children’s mathematical experiences with basic 
conceptual ideas about mathematics and its structure, and then build number from 
there. Thus young children begin their mathematics program in grade 1 by describing 
and defining physical attributes of objects that can be compared. Davydov (1975a) 
advocated children begin in this way as a means of providing a context to explore 
relationships, both equal and unequal. Six-year-olds physically compare objects’ 
attributes (length, area, volume, and mass), and describe those comparisons with 
relational statements like H < B, where H and B represent unspecified quantities
being compared, not objects. The physical context of these explorations and means 
by which they are recorded, link measurement and algebra so that children develop 
meaning for statements they write and do not see them as abstract.  
In the prenumeric phase, children grapple with how to make 1) unequal quantities 
equal or 2) equal quantities unequal by adding or subtracting an amount. A statement 
representing the action is written: if H < B, students could add to volume H or 
subtract from volume B. First graders observe that regardless of the action they 
choose, the amount added or subtracted is the same and is called the difference.
Number is introduced when students are presented with problematic situations that 
require quantification. It is then that a unit is presented within a measurement 
context. First graders re-examine some of the situations where they transformed two 
unequal quantities into equal amounts. For example, when working with mass, they 
may have written Y = A + Q. They notice now that mass Y is the whole and masses A
and Q are the parts that make up the whole.  

Y

A Q

Y

A Q
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Both diagrams represent the relationships among the parts and whole of any quantity. 
From these diagrams children can write equations in a more formal way.  

Y = A + Q Q + A = Y Y – Q = A Y – A = Q
The part-whole concept and related diagrams help young children organize and 
structure their thinking when they are working with word or contextual problems. 
The scheme supports children writing equations and identifying which ones are 
helpful in solving for an unknown amount, without forcing a particular solution 
method. For example, students are given the following problem: 

Jarod’s father gave him 14 pencils. Jarod lost some of those pencils, but still has 9 left. 
How many pencils did Jarod lose? (Dougherty et al., 2003) 

In this case 14 is the whole, 9 is a part and the lost pencils (x) are a part. There are at 
least four equations (a fact team) that can be written to describe this relationship. 
(1) 14 = 9 + x   (2) 14 = x + 9   (3) 14 – 9 = x (4) 14 – x = 9 
The third equation, 14 – 9 = x, could be an appropriate choice to solve for the 
unknown. Some of the students in the MU research study use that method. However, 
other students choose to use the first or second equation to solve for the unknown 
amount. Their reasoning follows the compensation method for solving an equation by 
asking the question, “What do I add to 9 that gives 14?”

DESCRIPTION OF STUDY AND DATA COLLECTION 
Measure Up uses design research (Shavelson, Phillips, Towne, & Feuer, 2003) as a 
means of linking research with the intricacies found in classrooms. The design 
research includes two sites 1) Education Laboratory School (ELS) Honolulu, HI and 
2) Connections Public Charter School, (CPCS), Hilo, HI. These sites were carefully 
selected to provide a diverse student group representative of larger student 
populations in regard to 1) student performance levels, 2) socio-economic status, and 
3) ethnicity. Student achievement levels range from the 5th to 99th percentile, with 
students from low to high socio-economic status and ethnicities including, but not 
limited to, Native Hawaiian, Pacific Islanders, African-American, Asian, Hispanic, 
and Caucasian. Students at ELS are chosen through a stratified random sampling 
approach based on achievement, ethnicity, and SES. No segregation or tracking of 
students is done at either site; all special education students are part of an inclusion 
program. Both sites have a stable student population for longitudinal study.  
The MU project team is in the classroom observing and/or co-teaching daily. Three 
project staff members record observation notes in three separate formats. One person 
is responsible for documenting the mathematical development, one scripts the lesson, 
and one records instructional strategies used. Observation notes form a microgenetic 
study of student learning related to the materials under development. Videotapes are 
made of critical point lessons where the complexity of the mathematics shifts. 
Indicative of the design research approach, the MU project team discusses the types 
of problems or tasks that were used, the discourse that evolved from them, the 
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expectations about participation across the broad range of students, the role(s) played 
by representations and tools in the learning process, and the mathematics itself in 
debriefing sessions where analyses of data and interpretations of such are done.
Two types of individual student interviews are also conducted. One type, “teaching 
experiments,” is adapted from a similar technique used in developing an algebra 
program at CRDG (Rachlin, Matsumoto, & Wada, 1987). As tasks are presented, 
students are asked to “think aloud” as they attempt the them. If students stop 
explaining, the interviewer prompts them by asking ‘What are you trying to find 
(do)?’ or ‘What’s giving you a problem?’ If difficulty persists, the interviewer gives 
more specific clues, increasing the specificity until the child can complete it. The 
clues range from noting a particular error to more direct instruction.  
In the second type of student interviews, project staff gives students tasks that would 
represent the level of mathematics that students would have experienced in a more 
conventional program or that focus on bigger ideas. Responses from students are 
compared to students from other grade levels that have not been part of MU. The 
purpose of these interviews is to determine how the mathematical understandings of 
students in the MU project compare to those students in other programs.  
During student interviews, a group of mathematics educators, mathematicians, and 
psychologists has the opportunity to watch and participate in the interview live. The 
interviewer wears an earphone, and a video camera projects the interview into 
another room where the group is seated. The group can suggest additional questions 
through a microphone for the interviewer to pursue, enhancing the information 
gathered from the interview. 
Types of problems presented and solutions used 
As students move through their mathematical experiences, they use a variety of 
means of representing problem situations. They follow a progression similar to what 
Sfard (1991, 1995) described as a historical perspective (interiorization, 
condensation, and reification). As students work in each mathematical concept, every
new idea is introduced with a physical model that is simultaneously represented with 
an intermediate model (like a diagram) and a symbolization (equation or inequality). 
This does not follow the typical approach where students work with physical models 
or manipulatives, then move to iconic or pictorial representations, and lastly, work 
only with symbols. The advantage of simultaneous representations is that students 
form a cohesive mapping of what the symbols represent and can see patterns and 
generalizations beyond the specific problem. 
What follows are three snapshots of ten grade 3 students, taken from the 2003–04 
school year. These students have been part of the Measure Up project since grade 1 
with the exception of one student (Student S) who joined the class this year. In the 
first and last snapshots presented the data were taken from the classroom. The second 
example is from individual student interviews of these children. The tasks show the 
bridging from grade 1 and 2 mathematics to a more sophisticated level. Their 
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responses are linked to Sfard’s progression (1991, 1995) such that an interiorization 
response is indicative of problem-specific characteristics; a condesation response 
indicates a transition from a specific to general solution approach, and a reification 
response embodies multiples forms of representation as a means of generalizing the 
structure of the problem. 
Sample 1 

Ama caught k fishes and Chris caught e fishes less. How many fishes did Chris catch? 
Dusty had b fishes in a bucket. When Anthony added his fish, there were g fishes in the 
bucket. How many fishes did Anthony catch? 
Sarah caught p fishes, and Tara caught c fishes. How many more fish did Sarah catch? 

Students were asked to ‘show the parts and whole in a diagram or on line segments’ 
(Dougherty et al., 2003).  
Students’ representations varied with their ability to handle complex cognitive tasks. 
A sample of each type in response to the first problem follows.  

Interiorization (Student M, 2003)

Condensation                  (Student S, 2003)

Reification       k – c = e       k    (Student RI, 2003)
      k – e = c 

Sample 2 
Reed gave Jackie a strip of paper w length-units long. He gave Macy another strip of 
paper 9 length-units shorter than Jackie’s. How long are Macy’s and Jackie’s lengths 
altogether?
Jason has v mass-units of rice. Jon has k mass-units less than Jason. How many mass 
units of rice do Jason and Jon have together? 
Karyn had 43 volume-units of water in one container. In another container, she had 8 
volume-units less than in the first container. If she pours all the water into one large 
container, how many volume-units of water will she have? 

Students were asked to decide in what order they would like to solve the problems. 
Then, solve the problems in any way they wanted.
Consistently, regardless of cognitive level, students opted to do the numerical 
problem first. The mixed non-specified/numerical problem was chosen second, with 

e Ama Chris

k

e
K – E 

k

c e
c e
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the non-specified problem chosen last. Four students indicated that it did not matter 
what order was chosen, they were all solved the same way. They did, however, 
proceed to solve the numerical one first. In all cases, students, including those who 
had used the interiorization method at the onset of the school year, used either a 
condensation or reification approach to solve the problems. 

Condensation         43 – 8 = 35    35 + 43 = 78  (Student C, 2003) 

Reification      x x = 43 + 35     (Student RE, 2003) 
            x = 78 

Sample 3 
When his father takes 1 step, it takes Michael 3 steps to travel the same distance. 
a. Michael’s father walks 5 steps to get from the front door to the sidewalk. How many 

steps would Michael take to get from the front door to the sidewalk? 
b. Michael took 27 steps to get from the front door to his neighbor’s front door. How 

many steps would Michael’s father take to walk the same distance? 

These problems were used in the introduction of multiplication. Without direct 
instruction, students used similar diagrams to represent, and assist in solving, the 
problems. Samples from each type are as follows.   
Interiorization                      (Student C, 2003) 

Condensation               3 + 3 + 3 + 3 + 3 = 15    (Student J, 2003) 

Reification

   3 • 5 = x x = 15     (Student M, 2003) 
The generalization of the structure increases with each successive level. The diagram 
used in the reification approach is indicative of the general model of multiplication 
used in Measure Up. Unit M (in this case, Michael’s step) is used three times to make 
intermediate unit D (the dad’s step). Intermediate unit D is used five times to make 
quantity Q. If Unit M had been used by itself to create Q, Q is then represented as the 
product of 3 and 5. This last diagram embodies the use of a unit used to create a 
larger, intermediate unit as a means of creating a quantity. As MU students explore 
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multiplication and division, this model helps them define the quantities they are 
working with and their relationships.

IMPLICATIONS
Student solution methods strongly suggest that young children are capable of using 
algebraic symbols and generalized diagrams to solve problems. The diagrams and 
associated symbols can represent the structure of a mathematical situation and may 
be applied across a variety of settings. Students appear to utilize some form of the 
diagram and regardless of the sophistication of that model, students are developing a 
fluidity that allows them to attempt, and solve, word problems. The use of algebraic 
symbols and diagrams appears, at this stage of the research, to positively impact on 
students’ mathematical development, especially when children develop their 
understanding of, and applications for, such diagrams through an approach that 
consistently and simultaneously links the physical model, intermediate 
representations, and symbolizations within each lesson, and not in a sequential 
manner.
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CORRESPONDENCES, FUNCTIONS AND ASSIGNATION RULES 

M. Downs, J. Mamona-Downs 
University of Macedonia, Greece 

In this paper we put forward a theoretical position that, in cognitive terms, a 
differentiation should be made between a correspondence and a function. Important 
in understanding this difference is the role of an assignation rule; the 
correspondence acts as a way to identify a rule in context, whilst the function 
accommodates the rule in a more formal framework providing a secure base for 
argumentation. This perspective is used to interpret some students’ behavior in a task 
where the identification of a particular relationship is crucial for its solution. 

Introduction
 When the word ‘correspondence’ is invoked in mathematics education 
literature, it is usually done in contrast with what is often termed ‘covariation’. This 
‘duality’ in the notion of function can be said to have its roots historically; 
mathematicians up to the 19th century usually handled perceived relationships as the 
co-ordination of variables, whereas latter mathematicians tended to insist on ordered 
pairs. Papers dealing with the development of the concept historically include (Malik, 
1980) and (Kleiner, 1989). This issue has been influential on curriculum decisions 
about how functions should be taught; this was particularly significant during the so-
called ‘new math’ era (see e.g., Eisenberg, 1991). This theme is rather incidental to 
this paper, but it is important to mention it because in the duality of covariation and 
correspondence, the correspondence is closely linked with the ‘modern’ definition of 
function. In contrast, though, in this paper we wish to stress differences between 
correspondences and functions. 

We shall argue then that although a function can always be constructed to 
‘express’ any given correspondence, the correspondence and the function are 
essentially different things. In particular the correspondence is always understood 
within the context of a task environment, so we avoid having to think about the 
mapping explicitly in the form of ordered pairs (that is a problematic structure for 
many students if they are exposed to it). The correspondence involves an assignation 
rule that maps one family of objects to another in a systematic way. The function is a 
framework that allows the expression of this assignation rule in terms of specific sets. 
As such, we regard the function as a formal counterpart of the correspondence that is 
taken as having an intuitive character. 

In this paper we shall develop the issue of the previous paragraph, and shall 
discuss its educational significance. In particular, now we are in the position of 
comparing an intuitive construct with one that is more formal, a ripe situation for 
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balancing flexible thought with tight argumentation. We shall illustrate this by 
describing a particular episode from a fieldwork that displays how the central idea 
opening up a general direction for solving a specific task comes in the form of a 
correspondence, but this correspondence is handled securely only when it is 
‘converted’ into a function.

Correspondences, functions and assignation rules
 Perhaps some channels of communicating mathematics, especially textbooks, 

would not explicitly discriminate between the terms ‘function’ and ‘correspondence’. 
This is because they may not aim to provide means for overt discussion between the 
intuitive and formal levels of expression; evidently, though, the two words carry 
different connotations.
A correspondence marks the outcome of a mental activity that led to the identification 
of some association in a system. The ‘human’ component here should be stressed. We 
should also qualify what we mean by ‘association’ in this context. What governs the 
character of the association is a natural rule (i.e., the rule is determined by the 
perceived structure of the system) that provides a particular reason to make a mental 
linkage between any object of one kind with a (unique) one of another kind. We shall 
call such a rule an assignation rule. The assignation rule has the role of indicating 
how any particular relevant single object would be assigned or related to some other 
object. The associated correspondence expresses the ‘objectification’ of the process 
implied by the rule, in the sense that one can conceive the rule acting on all relevant 
objects simultaneously. We stress here that although there is a consciousness of a 
systematic pairing of objects, a correspondence in itself does not imply an analysis of 
the exact range, or extent, of the objects for which it makes sense to say that the rule 
applies. The assignation rule is the prime focus for the correspondence; a common 
occurrence, though, is that a student understands the rule but tries to apply it where 
this is not suitable. (The basic rule may be constrained by certain conditions due to 
the specific aims of the mathematics being done.) 
In this paper we choose to consider the role of a function as a counterpart to a 
correspondence. (In more abstract situations, e.g., when a certain function is known 
to exist but is not explicitly constructed, there may be no sense of an accompanying 
correspondence.) The formal definition of a function is strictly given in terms of a 
(formal) relation, but what is usually used is the medium of the sets domain, co-
domain and a means to associate every element of the domain with a (unique) 
element of the co-domain. A function differs from a correspondence in two ways. 
First, the function insists on the specification of two sets before any association is to 
be introduced. This contrasts with the focus that a correspondence has, where an 
assignation rule is comprehended first contextually, and only after can there be 
reflection as to the exact range of the objects involved. Second, although a function 
must express a means to make an assignation, this does not necessarily have to be 
explicit or to take the form of anything that would be recognized as a rule. How can 
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these differences be explained, and what possible cognitive problems might accrue 
for the student? 

What is at the heart of this issue possibly is the following: the genesis of a 
correspondence is in the mental processing of an observation, whereas the role of a 
function is more to do with control. Let us expand on this. A correspondence usually 
results from the identification of an association discovered in terms of the system 
being studied. Quite likely this discovery will affect the student’s cognitive view of 
the whole system. One thing that can happen is that too much attention is put on the 
newly realized correspondence, with the outcome that the original aims of the task 
become confused. Insisting on specifying explicit sets describing the objects to be 
related would help in controlling the situation. This forces a shift of attention from 
the correspondence itself (primarily thought about in terms of an assignation rule) to 
the delineation of the ‘arena’ for which the correspondence applies. Identifying this 
‘arena’ should provide a balanced perspective about the correspondence within the 
whole system.  

From the discussion above, it is clear from a cognitive point of view that a 
function formed to ‘reflect’ a given correspondence does not have the character of a 
replica in more mathematical terms, nor even of a mathematical model. The 
correspondence and the function have essential differences that hint that the latter is 
best thought of as a way of accommodating the former in a controlled mathematical 
environment. It may be difficult for students to appreciate the two different but 
related roles taken here. Indeed the educational literature on functions suggests that 
students do not make a clear distinction between a correspondence and its parallel 
function. A typical list of students beliefs on functions, as in (Vinner, 1983), hardly 
would refer to domains and co-domains. Instead it would mostly concern 
relationships or the usage of given rules, together with the idea of covariation, as well 
as identification with specialized types of representation such as algebraic formulae 
and graphs. Covariation provides an alternative intuitive way to process relationships, 
see the introduction. All of the other items tend to promote the idea of the agency of 
an assignation rule, and hence would suggest a mentality more allied to a 
correspondence rather than to a function (from our point of view). Further, certain 
student behavior, such as over assumption of the property 1:1 in relationships as 
mentioned in (Dubinsky & Harel, 1992), could be accounted for from the 
correspondence viewpoint. But what consequences might this over-riding dependence 
on the correspondence have in real terms? 
If, as the evidence indicates, students do not appreciate the role of the definition of a 
function as an accommodating framework, according to our theoretical position they 
may well lack the control in refining correspondences. We shall raise a particular 
point concerning this situation. If a correspondence were realized within a system, 
would the significance of the correspondence in the general system deflect attention 
from the specific task aims? Were the respective function formulated, would this 
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circumstance be better controlled? In the next two sections, we will illustrate this 
issue by an episode extracted from some fieldwork.  

The Fieldwork 
The original purpose of the fieldwork was to illustrate a teaching sequence 

designed to make students become aware of a particular technique (but with the 
potential of being used for other techniques). The particular technique studied was the 
construction of a bijection in order to transfer questions about how many elements 
there are in one set to another. The main instrument in the teaching sequence is a 
semi-structured discussion between a small group of students with a 
teacher/researcher prompting its overall direction. The students try to answer some 
tasks all designed such that they are most conveniently solved via the technique. The 
prompting is done to help the students to achieve a solution consonant to the 
technique for each task, but this is not (necessarily) done with the students’ being 
aware of the technique itself. After, further prompting is performed to make the 
students reflect about the solutions of the tasks and their commonality, in the hope 
that this would yield a conscious awareness of the technique. 
In practice, what the first level of prompting involved was to ‘nudge’ the students’ 
attention towards a particular relationship understood in terms of the task 
environment. The second level of prompting largely concerned influencing the 
students to try to express the relationship as an explicit function. Thus we have the 
situation where correspondences are first observed in context and then are 
accommodated as functions, just as in the main theoretical theme presented above. 
This explains why this fieldwork is pertinent. 
 As we shall only extract one particular episode from this fieldwork, more functional 
details are not given here. The study took place at an U.S.A. University in 2001 
involving 4 sophomore students all planning to major in disciplines with high 
mathematical requirements. The discussion was audio and video taped.
The Episode 
 We shall present an episode extracted from the fieldwork described in the 
previous section. The participating students will be denoted as S1, S2, S3, S4 and the 
prompter as L. Material in parenthesis in the transcript is explanatory and not spoken. 
The task considered is: 

 A (r,m)-tuple is an ordered  string of 0’s and 1’s where there are r 1’s and (m – 
r) 0’s.  We denote the set of all (r,m)-tuples by S r,m.
 Form a bijection between S r-1,m-1 �  S r,m-1  and S r,m. Explain why this implies:

r-1 C m-1  + r C m-1  = r C m
where rCm signifies the number of ways of picking r things out of m. 
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The key in solving the problem is to recognize the natural assignation rule suggested 
by the action of suppressing the, say, last component of an element of Sr,m . More 
specifically, if the last component of an element of Sr,m is 0, it is mapped to an 
element of Sr,m-1  ; if it is 1, it is mapped to an element of Sr-1,m-1  . Realizing that the 
underlying function is a bijection, and that | Sr,m | = rCm , this yields the well known 
numerical identity between binomial coefficients without algebraic manipulation. 

The students were not able to proceed on the task on their own. Prompting was 
done to draw the students’ attention to the number of components of the elements in 
the given sets. This eventually led one student, S2, to state: “Couldn't you just like 
knock out the last...?” At this point we expected a clear expression of a 
correspondence to emerge; instead the discussion took another turn: 

1. S3: The m term will either be a 1 or a zero.  So if it’s 1, send it to this set (Sr- 1,m-1)   and 
if it’s a zero, send it to the other set (Sr,m-1).

2. L:  Uh-huh.  So… 
3. S1: … Well, the only way that would work, mapping the ones with zero in the mth term 

to the first one (Sr,m-1)., and with 1 in the mth term to the second one (Sr- 1,m-1), the only 
way that would work is if the two sets have an equal number of elements.  That would be 
the only way that I can see that would be a bijection. 

4. L:  Can you explain yourself a little bit more on that? 
5. S1: Well, the two possibilities are that it has zero in the last term or 1 in the last term.  

And there are equal number of these terms and these terms…  There is an equal number 
of each… Okay, if there are m terms in this (Sr,m), there are m over 2 terms of this (Sr,m-1)
and there are m over 2 terms of this (Sr-1,m-1)  .

6. S3: They  (Sr-1,m-1 and Sr,m-1 ) would have to have the same number of elements as half of 
that set  (Sr,m) ? 

7. S1:  Well, I was assuming that since we said that a bijection existed, that we’re trying to 
find a bijection, if a bijection did exist.  Then this set would have to have the same 
number of elements as this set anyway.  So… I took that on an assumption.  But, yes, 
that’s true. 
(Some discussion suppressed). 

8. S3:  I have something.  In the case where the mth term is zero, we know there are r 1’s.  
And if you take the m-1 elements and you could match them up to Sr,m-1 , that would 
form half of the bijection.  And in the bottom case… in the bottom case you know there 
are r 1’s, and one of them is already the mth term so there are r-1 left, and you could 
map that to that (Sr-1,m-1)  … and that would be a bijection. 

9. L:  Okay, so what we had before, I think we had the suggestion that the size of this set  
(Sr-1,m-1)   and this set (Sr,m-1)  was equal… 
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10. S1:  I’m thinking that’s probably not true, no.  I was thinking that there were… Okay, 
no, that’s not true at all.  I take that back.  I’m agreeing with what he’s saying now, that 
that’s not important.  Okay, I understand. 

The students are led to observe a particular action (of ‘knocking out’ the last 
component) that induces a way to identify any object of one kind (a tuple with m 
components) with one of another kind (a tuple with m - 1 components). This means 
the students have produced a natural assignation rule and thus a correspondence.  

The task environment refers to certain sets (of tuples), whose appearance (we 
supposed) would help the students to make a smooth transfer from the 
correspondence to a suitable function. As we see from the protocol above, this 
transfer in fact took some time to be effected. In 1, we see that the correspondence 
was mentally reprocessed in a coarser way to how it was first conceived. Instead of 
associating a tuple T (in Sr,m) with a particular tuple with m-1 components, the rule is re-read 
only to register to which out of the two sets, Sr-1,m-1 or Sr,m-1 , T will be ‘designated’ 
to. In this way the focus is turned away from the natural 1:1 matching that the 
correspondence suggests. It seems that this image dominates until we get to 8. The 
correspondence is being used to gain a particular perspective on the general system, 
but it is not being developed as a function. From this situation and as the task 
environment explicitly asks for a bijection, the students actually look elsewhere to 
find a bijective function. One student claims that the sets Sr-1,m-1   and Sr,m-1  have the 
same number of elements in 3, a proposition that is not (in general) correct. There 
seemed to be two reasons why the student makes this proposition. First in 5 he 
expressed the (false) belief that the number of elements of Sr,m  ‘ending’ with 0 
equals the number of elements ‘ending’ with 1. (We conjecture that the source of this 
belief is based on an under criticized sense of symmetry.) The understood designation 
of sending elements of Sr,m  into either the set Sr-1,m-1   or the set Sr,m-1 then leads him 
to his claim. Second, in 3 and 7 it comes clear that he is also influenced by the 
appearance of the word ‘bijection’ in the question; he ‘knows’ that he must fit one 
somehow in the system and the only way he can ‘see’ one is through the supposition 
that |Sr-1,m-1 | = | Sr,m-1 | that would ensure that a bijection exists between these two 
sets. (Notice in taking this stance means that no bijection has been explicitly 
constructed.) Only in 8, that occurred a significant time after the start of this 
discussion (some material has been omitted in the protocol), did another student 
identify a bijection with the original correspondence. This led the student S1 to 
immediately renounce his claim in 10. Notice how this student was not interested in 
explaining explicitly why his claim was false, but he dismissed it as if there was no 
longer any reason to believe that it should be true. 

We find this episode interesting because it illustrates how a correspondence 
observed in a system may not be readily converted into a function, but can be an 
influence to throw a new intuitive perspective of the system. However doing this led 
to an unhelpful line of thought. Only when finally the correspondence was fully 
integrated with the sets being talked about (so that it could be recognized as a 
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function) did this confusion dissipate. Hence the forming of the function acted as a 
device of control in the soundness of argument made about the correspondence. 

Concluding Remarks 
This paper has discussed the process of forming functions from the basis of 

observing correspondences drawn from context. In this respect we make a 
differentiation between the character of a correspondence and that of a function. We 
believe that this perspective is not well represented in the extant literature on 
functions. We agree with the argument given in the review article (Thompson, 1994) 
that the current trend of concentrating on the so-called representations of functions 
(usually graphs, algebraic expressions, tables) and their co-ordination is being over 
emphasized. This tendency reflects the current teaching practices that has severely 
restricted the students’ image of what functions are in general, as this image is 
dominated by certain paradigms, see (Bakar & Tall,1991). Further, the representation 
perspective tends to neglect the question how, and indeed why, functions come to be 
constructed. There are studies that go some distance in this direction, where within 
the task environment a certain relationship is pointed out, and the task itself is to 
express it by a suitable real function (sometimes where only qualitative description in 
terms of properties is feasible, see e.g., Monk, 1992 Thompson, 1994). What often 
seems to occur in such studies is that students lose control concerning what families 
of objects should accommodate the intuitive sense of the relationship. In this paper, 
we go a little further in that even the obtaining of the relationship is part of the 
solving procedure. It is perhaps in the latter circumstance that the drawing of a 
distinction between a correspondence and a function is at its most compelling. The 
correspondence is how a suitable relation observed in a system is first thought of, and 
the allied function has the role to ensure that the subsequent mental argumentation of 
the correspondence is grounded on an explicit mathematical framework that should 
remove vagueness and arbitrary interpretations. A crucial part of this is that the 
function accommodates the assignation rule understood for the correspondence in an 
unequivocal way.  This issue was well illustrated by the episode described in this 
paper. We believe that the perspective that we have laid down on correspondences, 
functions and assignation rules should provide not only a good way to explain 
students’ behavior whilst constructing functions, but should be taken in account in 
how functions are taught. We plan to expand on these themes in subsequent papers.
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We investigated unjustified assumptions made by students when proving geometric 
statements. Geometric statements can be presented with a diagram or without. 
Diagrams can be accurate or sketchy. Unjustified assumptions may originate in an 
accompanying diagram. We thus asked whether the way in which a statement is 
presented has an effect on unjustified assumptions. We also attempted to find out 
what motivates students to make unjustified assumptions. Data were collected by 
means of written questionnaires and individual interviews. The main findings were 
that among all incorrect answers, 72% were based on unjustified assumptions, and 
that students make unjustified assumptions with good reasons such as in order to 
remove obstacles.
THEORETICAL BACKGROUND 
Fischbein (1993) introduced the term "figural concepts" to stress the double nature of 
geometric figures: conceptual and figural. The conceptual nature includes 
characteristics such as completeness, abstraction and generalization while the figural 
nature includes characteristics such as color, size and shape. The conceptual and 
figural characteristics used when proving depend both, on the conceptual system that 
includes abstract ideas and concepts and on the figural system that includes mental 
representations and images. For example, when attempting to make two triangles 
overlap, concepts like angle, side and triangle are needed as well as figural 
information like suitable angles and sides (Tall & Vinner, 1981). In every process 
like this, there is a tension between the conceptual system and the figural system and 
many of the difficulties in geometry can be interpreted due to this tension. 
Definitions, concepts and theorems impose characteristics on geometrical objects. 
However, these definitions and concepts are not always clear to students and often 
they are forgotten. As a result, the figural component tends to free itself from the 
formal control and to act independently (Fischbein, 1993; Mariotti, 1997). As a 
result, diagrams in geometry can be obstacles when proving geometrical statements. 
These obstacles are divided into three types:   
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Fig. 1

Particularity of Diagrams: Most diagrams in high school geometry are intended as 
models. They are meant to be understood as representing a class of objects and 
contain the essence of the situation. Nevertheless, every diagram has characteristics 
that are individual and not representative of the class. For example, a specific acute 
triangle ABC which is meant to represent all triangles is by no means a universally 
valid representation since it does not depict obtuse angles. This obstacle causes 
students to be trapped by the one case concreteness of an image or diagram which 
may contain irrelevant details or may even introduce false data (Yerushalmy & 
Chazan, 1990). 
Prototypical Diagrams as Models: If students link a definition to a standard, 
prototypical diagram, the particularity of the diagram can lead to another obstacle: a 
prototypical image may induce inflexible thinking thus preventing the recognition of 
a concept in a non-standard diagram. Students’ definitions may include irrelevant 
characteristics of the standard diagram, causing difficulties in creating or interpreting 
diagrams (Yerushalmy & Chazan, 1990). For example, among rectangular triangles, 
the one with the perpendicular sides in vertical and horizontal position is prototypical 
and students as well as teachers have great difficulty in identifying other positive 
examples (Hershkowitz, 1989).  
Inability to "See" a Diagram in Different Ways: Psychologists often test spatial 
ability by means of embedded figures tasks, in which a simple figure must be 
identified in a more complex figure. Yerushalmy & Chazan (1990) consider this sort 
of reorganization to be a central aspect of mathematical creativity. In geometry, there 
are situations, where students are asked to do this sort of reorganization. However, 
the ability to attend selectively to parts and whole does not come easily for many 
students. According to Hoffer’s (1981) formulation, the van Hiele stages suggest that 
at level 1 (recognition) the student recognizes a shape as a whole. It is only at level 2 
(analysis) that the student can focus on parts of a diagram and analyze properties of 
figures. For example, students may not be able to see AD as a side of triangles ABD 
and ACD because it is seen only as the altitude of triangle ABC (Fig.1) (Hoz, 1981).
These three obstacles may lead students to make unjustified          
assumptions, i.e. to assume properties that are not given and are not
essential for proving the statement at hand. Geometric statements can
be presented with a diagram or without. Diagrams can be accurate or  
sketchy. Unjustified assumptions may originate in an accompanying diagram. 



www.manaraa.com

PME28 – 2004  2–313

A B

C

F

D E

A

CBD E

BE FC�

A B

C
D

F
E

This led to the following research questions: 
1a) Do students make unjustified assumptions, when proving geometric claims? 
1b)  Do students make more unjustified assumptions when the statement is given  

with an accompanying diagram or when it is given without diagram? 
1c) Do students make more unjustified assumptions when the diagram      

accompanying the statement is accurate or when it is sketchy? 
2)  What motivates students to make unjustified assumptions?

METHOD
In order to investigate these research questions, data were collected by means of 
written questionnaires and by means of individual interviews. Questionnaires were 
administered to 92 students from four classes in three different schools in Israel who 
were enrolled in a full-year 10th grade geometry course. Seventeen of these students 
were subsequently interviewed. Interviews were audio-recorded and transcribed. 

Research Instruments 
Questionnaire: Three questionnaire versions were used. All versions included the 
same three statements and proof tasks: two about parallelograms and one about an 
isosceles triangle. However, the statements were presented differently in the different 
versions. The tasks were all within the field of experience of the students, and of a 
level they could be expected to prove in class or in an examination (Table 1).

Table 1: The questionnaire tasks with the sketchy diagram 

Statement Task Goal
Given: ABCD parallelogram. 
BE, CF bisect angles B, C. 

Prove:
 FE=EC

To investigate whether students make 
unjustified assumptions, such as FB=CB 
or   with an accurate and a 
sketchy diagram and without diagram. 

Given: AC=AB,
<DAB=<CAE

Prove:
DB=CE

To investigate whether students make 
unjustified assumptions, such as AD=AE,  
<D=<E with an accurate and a sketchy 
diagram and without diagram  

Given: ABCD parallelogram. 
Point F is the middle of DC  

Prove:
AD=DE

To investigate whether students make 
unjustified assumptions, such as: BF=FE 
with an accurate and a sketchy diagram 
and without diagram 
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Each statement was presented with an accurate diagram in one version, with a 
sketchy diagram in another version and without diagram in the third version. Each 
version included one statement with an accurate diagram, one statement with a 
sketchy diagram and one statement without diagram. The order of presentation of the 
statements was the same in each version (Table 2).

Table 2: The three versions of the questionnaire 

Task Version A Version B Version C 
1 accurate 

diagram 
sketchy
diagram 

without
diagram 

2 without 
diagram 

accurate
diagram 

sketchy
diagram 

3 sketchy 
diagram 

without
diagram 

accurate
diagram 

Each student was given one version of the questionnaire at random. Writing the 
questionnaire in three versions was intended to 
a) eliminate the influence of any particular task or of any particular representation, 
b) separate between the three ways of presentation (accurate diagram, sketchy 

diagram and without diagram), in order to get a broad picture about the influence 
of each way on students’ proving and making unjustified assumptions.  

Interviews: Seventeen individual interviews were conducted in order to explore what 
motivates students to make unjustified assumptions in tasks with an accurate 
diagram, in tasks with a sketchy diagram and in tasks without diagram. The 
interviewees were selected according to three criteria:           
�� between three to five students were selected from each class, in order to represent
�� each one of the classes appropriately, five or six students were selected for each  

version of the questionnaire, in order to get an appropriate picture of each one of 
the three presentations,           

�� the students were selected according to their performance in the questionnaire. 

FINDINGS AND DISCUSSION 
Table 3 presents the results of the three tasks according to the following categories: 
correct answers, incorrect answers and no answer. The category “correct answers” 
includes only answers with satisfactory proofs of the statement; all answers with 
unjustified assumptions were counted incorrect. The numbers in brackets in the cells 
of the incorrect answers refer to unjustified assumptions. 
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Table 3: Distribution of correct and incorrect answers (N=92) 

Task Correct
answers

Incorrect   (unjustified) 
answers    (assumptions)

No
answer

Total

1 60      27                (22) 5 92 

2 75       9     (5) 8 92 

3 73      14                 (9) 5 92 

Total 208      50 (36) 18 276

These results show that the majority of students responded correctly to the tasks, 
while some did not respond at all. But our focus is on the incorrect responses. The 
important finding is that among the 50 incorrect responses, 36 (72%) were based on 
unjustified assumptions. Furthermore, in each task, more than 50% of the incorrect 
responses were based on unjustified assumptions. These unjustified assumptions 
appeared in 36 responses and were due to 33 students (36% of the population). Thirty 
students made unjustified assumptions in one task and three in two tasks. This 
answers research question 1a. 
In order to answer research question 1b, we compare the influence of the two 
presentations, with diagram or without diagram, on unjustified assumptions. 
Similarly, in order to answer research question 1c, we compare the influence of the 
two kinds of diagram, accurate or sketchy, on unjustified assumptions. Table 4 
presents the results according to the three kinds of presentation. 

Table 4: Unjustified assumptions according to presentation (N=36) 

Task Accurate
diagram

Sketchy
diagram

Without
diagram

Unjustified 
assumptions (Total) 

1 6 5 11 22

2 0 2 3 5

3 3 2 4 9

Total 9 9 18 36

Table 4 shows that the number of unjustified assumptions in tasks without diagrams 
was twice as large as in tasks with diagrams and that no difference was found 
between the number of unjustified assumptions in tasks with accurate diagrams and 
in tasks with sketchy diagrams. This answers research questions 1b and 1c. 
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Table 5: Number of students making main unjustified assumptions 

Task assumption This
assumption

Unjustified 
assumptions (Total)

1 Drawing the line FG, where G is the 
intersection point between BE and CD, 
and assuming that it parallels to BC 

11 22 

2 AD=AE
<ADE=<AED

2
2

5

3 EF=FB 3 9 

Table 5 presents in the first column the most frequent unjustified assumptions, in the 
second column the number of students who made these assumptions and in the third 
column the total number of students who made unjustified assumptions. For each 
unjustified assumption, a detailed analysis was carried out according to the following 
aspects:
a) Motives for making the unjustified assumption,       
b) Using the unjustified assumption for proving the relevant statement,      
c) Using the unjustified assumption with a backward or forward view,        
d) Awareness of using the unjustified assumption,  
e) The effect of the presentation on unjustified assumptions.                     
In this paper, we present this analysis for only one unjustified assumption, namely the 
one in Table 5, which was made in task 1. This assumption was the most frequent 
unjustified assumption made in this study. However, we then present an overview of 
the results of the analysis of all unjustified assumptions. 
As mentioned in Table 5, the main unjustified assumption in task 1 was drawing the 
line FG, where G is the intersection point between BE and CD, and assuming that this 
line was parallel to BC. The most common motive for this assumption was to create a 
parallelogram FBCG (aspect a). Since FBCG is a parallelogram, its diagonals bisect 
each other and it was therefore easy to complete the proof (aspect b). Almost half of 
the students who made this assumption, did it with a backward view: looking at the 
givens, they already had a plan in their mind leading them to the end of the proof. 
The remaining students did it with a forward view: they considered how to use the 
givens in order to solve the task (aspect c). Most of the students who made this 
unjustified assumption were not aware of their mistake.
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During the interviews, they were very sure about their answers and did not hesitate at 
all (aspect d). This assumption was made about equally frequently in all three 
presentations. Thus, in this case, the presentation had no effect on the unjustified 
assumption (aspect e). 
Discussion according to aspects a-e 
a) Motives for unjustified assumption: Two main motives were found: a 
mathematical motive and a purely visual motive. According to the mathematical 
motive, students made unjustified assumptions in order to reach a specific stage in the 
proof, which led easily to the given statement. According to the purely visual motive, 
the way the diagram looked strengthened the students' feeling and intuition that the 
stage they wanted to reach (according to the mathematical motive) was correct, 
because they could see it in the diagram.
b) Using the unjustified assumption for proving the given statement: Students 
made unjustified assumptions instead of propositions they wanted to reach but didn't 
know how, or instead of propositions that they believed were correct.
c) Using the unjustified assumption in a backward or forward direction: The 
students who made unjustified assumptions, did it with one of two views: backward 
or forward. Those who did it with a backward view, thought of the stages they had to 
reach, in order to prove the given statement (from end to beginning). Those who did 
it with a forward view, thought how to use the givens and the relevant theorems and 
propositions in order to reach the end of the proof (from beginning to end).  
d) Awareness of using the unjustified assumption: Fourteen out of the seventeen 
interviewees were not aware at all of their unjustified assumptions, neither when 
answering the questionnaire, nor during the interview. Two others became aware 
during the interview. Only one student mentioned that she was aware of the 
unjustified assumption while solving the task. She explained that she felt the 
assumption was correct, but she did not know how to reach it correctly. 
e) The effect of the presentation on unjustified assumptions: In almost each task, 
there was a purely visual motive in aspect a. This motive demonstrates that the 
diagram affected the students' way of thinking and making unjustified assumptions. 
There were also cases where students, themselves, built diagrams, in which the 
unjustified assumptions were shown. Therefore, they used their diagrams as evidence 
why these assumptions were correct. 
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 CONCLUSIONS
o About four fifths of all answers were correct and only one fifth was incorrect. 

However, among the incorrect answers, 72% were based on unjustified 
assumptions. 

o The number of unjustified assumptions in tasks without diagrams was twice as 
large as the number of unjustified assumptions in tasks with diagrams. 

o No difference was found between the number of unjustified assumptions in tasks 
with accurate diagrams and the number of unjustified assumptions in tasks with 
sketchy diagrams. 

o Unjustified assumptions were made with the purpose of reaching a critical step in 
the proof. 

o Unjustified assumptions facilitated dealing with the tasks, removed obstacles and 
led immediately to the goal. 

o Unjustified assumptions were made when students believed they were correct.
o Unjustified assumptions were made when students were stuck. 
o In most cases, students made unjustified assumptions without being aware. 
In order to prevent the development of misconceptions regarding this phenomenon, 
teachers should be equipped with appropriate tools for working with their students 
and have to suggest a variety of problems given in the three ways of presentation. 
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THE IMPACT OF INDIVIDUAL CURRICULA ON TEACHING 
STOCHASTICS 

Andreas Eichler, Institut für Didaktik der Mathematik, TU Braunschweig 

This report focuses on teachers’ individual curricula. An individual curriculum in-
cludes contents and reasoning and can be structured in a quasi-logical system of 
goals and methods, which is the result of teachers’ planning of mathematics instruc-
tion. There is consent that the planning of individual curricula or the instructional 
practice is a form of social action. While action is an inner and subjective process, 
which is dependent on situations and individuals’ interpretation of a situation, here, 
the approach of research is qualitative and interpretative. So, individual curricula 
are re-constructed from interviews held with eight secondary teachers. One of the 
eight cases, the one of Mr. A, is lined out here. 

THEORETICAL FRAMEWORK
Curricula change. Here, curriculum means the system of subjects of instruction and 
reasoning of this system and issues that are directly related. While the contents of 
teaching as well as the main goals of teaching different mathematical disciplines are 
similar or identical, the importance of specific contents and the system of reasoning 
depend on the development of theories of teaching (mathematics). As the develop-
ment of new curricula follows social or political requirements or new didactical 
knowledge, it must be the main goal of professionals responsible for developing cur-
ricula to realize new ways of learning and teaching in schools. In every learning the-
ory, the key persons to apply new curricula to enable students to acquire (subjective) 
knowledge are teachers (see Fernandes 1995 and Wilson/Cooney 2002). Only they 
choose the subjects of instruction and only they define their goals for teaching 
mathematics.  
There are – especially in Germany – two ways of realizing new curricula. In the revo-
lutionary way, curricula are published by state governments and have to be installed 
in schools. But, especially in Germany, research shows that this way does not work. 
Governmental curricula and even didactical proposals for modified curricula are ob-
viously realized seldom in the daily instruction of mathematics (see Vollstädt et al. 
1998). This is (in Germany) especially the case for stochastics. Over 40 years, it is a 
didactical demand to teach stochastics or to teach more stochastics, but stochastics 
are hardly present in today’s mathematics instruction. So what may be the key of 
changing mathematics and stochastics instructional practice? 
In the evolutionary way, teachers integrate step by step didactical proposes in their 
individual curricula in an active and self-determined way. Here, it is one main hy-
pothesis that understanding teachers’ individual curricula is mandatory to grasp their 
instructional practice and to be able to change this practice (see also Pehkonen/Törner 
1993). So teachers’ individual curriculum, their subjective knowledge and concep-
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tions about mathematics and about learning and teaching mathematics is the focus of 
this line of research.
Governmental and didactical curricula consist of contents and their reasoning. Rea-
soning means that methods and goals are connected in form of if-then-sentences (see 
König 1975). One example: 
Students have to learn data-analysis. 
(goal)
If students learn data-analysis then they will become an individual 

with the ability to criticize. 
(method)

  Students have to become an indi-
vidual with the ability to criticize. 

(goal)
Figure 1: Goals and methods   

Here, it is another main hypothesis that individual curricula are constructed in the 
same way. The system of reasoning called goal-method-argumentation shall broaden 
and deepen the results of research on beliefs postulating types of teachers and their 
individual curricula (see Thompson 1984, Thompson 1992 and Leder, Pehkonen and 
Törner 2002).
There is consent that the planning of individual curricula or the instructional practice 
is a form of social action. While action – in sociological as in psychological defini-
tion – is an inner and subjective process, which is dependent on situations and indi-
viduals’ interpretation of a situation (see Wilson 1973), here, the approach of re-
search is qualitative and interpretative and uses the well elaborated psychological ap-
proach of subjective theories (see “Forschungsprogramm Subjektive Theorien”, 
Groeben et al. 1988). This approach newly developed in contrast to the behavioristic 
way by understanding people’s acting. It proposes the epistemological modelling of 
human theories of actions, which are parallel to researchers’ theories. The approach is 
oriented on Kelly’s (1955) report about the “man as scientist” and focuses on peo-
ple’s subjective knowledge structured in quasi-logical systems of concepts. Groeben 
et al. (1988) postulate the goal-method-argumentation to be one of these quasi-logical 
systems of concepts.  
So, the question of research focused on in this report is: 
What are the contents and goals of teachers’ individual curricula of stochastics? 
What are the goal-method-argumentations of teachers’ individual curricula and how 
they structure teachers’ instructional goals? 
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METHODOLOGY 
The approach of understanding action as an inner process depending on situations 
determines an inquiry in form of case studies (see Stage 2000). The definition of the 
cases is according to the theoretical sampling (see Glaser/Strauss 1967). Here, the 
cases were eight teachers grade 7 to 13 of secondary schools (A-level)1 in Northern 
Germany. The reconstruction of the individual (stochastic) curricula is based on in-
terviews designed in form of the problem-oriented interview (see Witzel 1982). The 
topics of these interviews emerged form the analysis of didactical curricula.  
The interviews were taped and transcribed. The interpretation was done according to 
the main method of humanities, the hermeneutics (see Gadamer, H. G. 1986 and 
Danner, H. 1998). Firstly, subjective concepts or goals of instruction and their defini-
tions were reconstructed. The second step of reconstruction included the reduction of 
subjective concepts to main concepts and the construction of a system of goals and 
methods and their relations in form of if-then-sentences (goal-method-
argumentation). This step determined the differentiation between five aspects of an 
individual curriculum: The contents of instruction, the goals of stochastics and 
mathematics instruction, teachers’ knowledge about how students view the usefulness 
of mathematics and finally, teachers’ knowledge about teaching mathematics suc-
cessfully (see to the latter two also Brown 1995). The identification of patterns of ar-
gumentations and the definitions of types across individual curricula is not subject of 
this report. 
The following discussion focuses on the results and their interpretation. The process 
of interpretation of the interviews and the reconstruction is not lined out. While pri-
marily one case will be discussed, some results of the other cases are used to com-
plete the case description.

THE CASE OF MR. A 
A is a teacher at a gymnasium in a little town in Northern Germany. As only three of 
twelve of A’s colleagues teach stochastics, A has to start with elementary fundamen-
tals of stochastics in grade 10 and grade 13, where he teaches stochastics. 
The curriculum concerning the subjects of instruction is shown below (see figure 1). 

Figure 2: Subjects of instruction
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There are four characteristic aspects to this curriculum. Firstly, A defines school-
stochastics as theory of probability. Elements of data-analysis such as descriptive sta-
tistics or statistical inference are missing. Furthermore, the curriculum is limited. Up 
from elementary fundamentals it will end with, also in the highest grade, an introduc-
tion to binomial distributions. Some of these contents (see figure 1) are part of all in-
dividual curricula analysed and are summed up to the category of a classic block of 
theory of probability. This means the sequence: fundamentals (for example chance or 
event), probability, combinatorics, Bernoulli-experiment and binomial distributions.  
The interpretation of the central idea of probability (the statistical or subjective inter-
pretation or the interpretation of probability defined by Laplace or described by the 
axioms) has evolved to be a main criterion of the curriculum’s analysis. There is one 
type of teacher like A, who anchors her or his curriculum in Laplace’s interpretation 
of probability and limits the curriculum as shown above. For example, another type 
of teacher focuses on the statistical interpretation of probability. Her or his individual 
curriculum includes data-analysis and especially statistical inference (the differentia-
tion is independent of the time-span teachers use for teaching stochastics). Instead of 
teaching statistics, A also covers subjects like Kolmogorov’s system of axiom or the 
conditional probability, which are not necessary for the main curriculum. Especially 
teaching axioms fulfils A’s idea of gymnasium’s instruction of mathematics. So, on 
the one side A’s curriculum is limited, but on the other side it is extensive within its 
limits. 
These characteristics are integrated in the argumentation on the goals of teaching sto-
chastics (figure 2 and also the following figures show a strongly condensed version 
of the goal-method-argumentations). 

Figure 3: Goals of stochastics curriculum 
The link between contents and goals of instruction is in every case one goal based on 
the thesis that the contents of instruction are the result of the teacher’s conscious elec-
tion. In the first level of goals there are some, which are concerning contents of in-
struction and are described above. Other goals include reasoning of instructional 
practice like using clear concepts in instruction, which are not based on special sub-
jects of instruction and are meant to increase motivation. Here, motivation means 
students enjoyed doing mathematics and so efficient instruction is possible. Finally, 
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there is the goal, especially for weak students, to acquire the ability to use mathe-
matical algorithms. 
The subject-oriented goals are the main goals in A’s goal-method-argumentation. So 
the main goal of stochastics is to build up a theoretical base of stochastics. This base 
does not enable students to solve real stochastic problems. It is only a base, which 
may be extended after leaving school. Beside stochastics algorithms it is the formal 
system of stochastics, axioms, definitions, theorems and proofs, which characterizes 
the theoretical base. 

Figure 4: Goals of mathematics curriculum 
As the theoretical base is the core of A’s individual stochastics curriculum, it is the 
core of the mathematics curriculum, too. The knowledge of the formal and deductive 
system of mathematics according to school-mathematics and the ability of dealing 
with special mathematical algorithms is the prerequisite to achieve the highest goals 
of school-mathematics:
the knowledge of the formal and deductive system of mathematics; 
the ability of mathematical and logical thinking. This means the ability to make de-
ductive conclusions and to think of assumptions and conclusions; 
the latter goals should be achieved in gymnasium’s mathematics; 
at last, it is A’s opinion that only a solid theoretical base enables students to remem-
ber the mathematical subjects, methods, relations after their school-career. 
For A, school-mathematics in general does not enable students to deal with real prob-
lems. While A’s main goal is to convey the formal system of mathematics other 
teachers define goals concerning problem-solving or dealing with real problems.  
In the context of another goal-method-argumentation, A’s subjective knowledge 
about how students view the usefulness of mathematics is anchored in a goal dis-
cussed above, the ability of dealing with mathematical algorithms. This argumenta-
tion (see figure 4) is a pragmatic one. So students need this ability to manage school 
examinations. If they are successful, they obtain the permission to attend a university. 
If students view themselves as prepared for life they are satisfied with school, which 
is the highest goal in this argumentation. 
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Figure 5: Students view on the usefulness of school-mathematics 
In other cases, this argumentation does not only apply to prepare students for univer-
sity or profession but also to prepare for life in terms of the ability of criticism.  
A’s last goal-method-argumentation (see figure 5) concerns his subjective knowledge 
about the efficiency of instructional practice. As sufficient exercise in dealing with 
mathematical algorithms results in success for most students, the clarity of instruction 
and, at last, an atmosphere of respect and understanding, however, makes the learning 
and teaching of mathematics possible. Firstly, it leads students to motivation. A’s 
definition of three classes of efficient instructional practice is striking. Firstly, effi-
cient instructional practice only means that students work and learn mathematical 
content. If this content has real applications or opens a deep insight into the formal 
system of mathematics, then A defined this as meaningful instruction. The third class 
is the combination of the latter two classes. A termed this worth-while instruction and 
stated that it is seldom realized. 

Figure 6: Efficiency of the instructional practice 

DISCUSSION 
A’s individual curriculum – and also the other individual curricula – with special re-
gards to stochastics consists of the discussed five aspects. The base of all goal-
method-argumentations is the system of the contents of instruction. It is impossible to 
understand one’s goals of stochastics or mathematics without knowing this base. The 
other two argumentations concerning content-oriented goals of stochastics and 
mathematics are well matched in the case of A. The other argumentations concerning 
students’ use of mathematics and the functionality of teachers’ instructional practice 
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are separate from special mathematical subjects. Finally, the following theses are 
based on this case description: 
The five aspects of an individual curriculum discussed here are the main aspects of 
every individual curriculum. 
In the eight individual curricula analysed there were no subjective concepts (or goals) 
that could not be ascribed to one of the five aspects. Also these five aspects are simi-
lar to theoretical differentiations of aspects of school-mathematics (see for example 
Thompson 1992). 
Only the knowledge of all aspects leads to a real understanding of an individual cur-
riculum. 
One example: There is an open conflict in A’s curriculum concerning the teaching of 
the formal system of mathematics or the algorithms as a toolbox. The main goal of 
stochastics and mathematics seems to be teaching the formal and deductive system. 
But the other argumentations show that for students’ success and for efficient instruc-
tion it is necessary to reduce formalism and extend the exercise of algorithms. Fur-
thermore, without knowing his goals oriented at the formal system it is impossible to 
understand some of A’s contents of instruction like his teaching of the axioms or the 
conditional probability. So only the comprehensive analysis opens a real and deep 
understanding of A’s individual curriculum. 
Without teachers it is impossible to implement new ideas or developments of didacti-
cal curricula into schools instructional practice. 
This hypothesis based on theoretical considerations and empirical results lined out in 
the discussion of the theoretical framework. 
Without understanding teachers’ individual curricula it is impossible to change these 
curricula.
One example: One new development of didactical curricula of stochastics is the ex-
tension to data-analysis. This could prove to be difficult for A, since there seems to 
be no anchor for integrating data-analysis into A’s individual curriculum. 
While teachers have to consider students’ individual knowledge, also didactical cur-
ricula have to consider teachers’ subjective knowledge and their individual curricula. 
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THE FUNCTIONS OF PICTURES IN PROBLEM SOLVING 
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In the present study, we assert that pictures serve four functions in problem solving: 
decorative, representational, organizational and informational. We, therefore, 
investigate the effects of pictures based on their functions in mathematical problem 
solving (MPS), by high achievement students of Grade 6 in Cyprus, in a 
communication setting. A number of tasks were developed and techniques of 
observation and interviews were conducted for gathering qualitative data from eight 
students. All kinds of pictures, except the decorative one, were found to be conducive 
to MPS and the communication process. Findings also suggest that the use of 
pictures in successful MPS depends on the relationship between the picture and the 
task (function of picture), and on students’ mental abilities.

THEORETICAL BACKGROUND 
Bruner (1961) supports that learning proceeds through three levels: the enactive, the 
iconic and the symbolic. In other words, pictures function as a mediator between the 
practical and the theoretical formal level of understanding. In the field of 
mathematics learning and instruction, pictures play an important role as an aid for 
supporting reflection and as a means in communicating mathematical ideas. Many 
researchers consider imagistic representations as a fundamental cognitive system for 
mathematical learning and problem solving (DeWindt-King, & Goldin, 2003), while 
expert mathematicians as well as mathematics students perceive visual 
representations as a useful tool in MPS and frequently attempt to use them 
(Stylianou, 2001).
The process of visualization is considered to be indispensable in mathematics 
learning and more specifically in MPS. The important role of visualization in MPS is 
stressed by the findings of recent studies, which consider the ability to form images 
of mathematical relationships as a necessary presupposition for effective MPS 
(Brown, & Wheatly, 1997). In the context of MPS, visualization refers to the 
understanding of the problem with the construction and/or use of a diagram or a 
picture to help obtain a solution (Bishop, 1989). Researchers argue that the solution 
of a problem may be accomplished by using either visual representations, or analytic 
thought processes, or both. The analytic method involves cognitive handling of 
objects and procedures with or without the use of symbols (Zazkis, Dubinsky, & 
Dautermann, 1996). 
The views supporting the use of visual aids or pictorial representations in 
mathematics do not diminish the importance of the verbal code of communication in 
the context of learning tasks or the effect of language on the formulation of thinking, 
communication and “doing mathematics” (Kieran, 2001). Language and pictures are 
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considered as two distinct kinds of representation and communication of 
mathematical ideas, with fundamental differences in regard with their informational 
content, structure and usability (Schnotz, 2002), which complement each other.
Thomas, & Yoon Hong (2001) suggest that students can interact with a 
representation, including a pictorial one, in two ways, by observing it or by acting on 
it. In the present study, we consider that the active use of pictures in the process of 
MPS may lead students to internal conflicts, which can be meaningful and beneficial 
in the solution effort. These conflicts appear when the text of the mathematical 
problem leads to a different solution procedure than the one derived from the use of 
the picture associated with the problem. However, the use of pictures, images or 
diagrams may have negative effects due to the obstacles they can create (Bishop, 
1989). These kinds of difficulties may be caused by factors, such as the selection and 
highlighting of some aspects of the picture at the expense of others, the emphasis on 
irrelevant details and the inappropriateness of spatial arrangement, which may give 
rise to misunderstanding (Colin, Chauvet, & Viennot, 2002). 
Based on Carney and Levin’s (2002) proposed functions that pictures serve in a text, 
this study used a similar categorization of pictures in order to examine the role of 
each type of pictures in students’ performance, in MPS. This study proposes four 
functions (categories) of pictures in MPS: (a) decorative, (b) representational, (c) 
organizational, and (d) informational. Decorative pictures do not give any actual 
information concerning the solution of the problem. Representational pictures 
represent the whole or a part of the content of the problem, while organizational 
pictures provide directions for drawing or written work that support the solution 
procedure. Finally, informational pictures provide information that is essential for the 
solution of the problem; in other words, the problem is based on the picture.
What is new in this study is the investigation of the relationship between different 
types of pictorial representations and MPS. Specifically, the purpose of the study was 
to explore the role of pictures based on their function, in MPS by students of Grade 6, 
in the context of an experimental model of communication. Three research questions 
were accordingly formulated: First, which is the effect of each category of pictures on 
students’ MPS performance? Second, which strategies do students use to solve a 
problem accompanied by each category of pictures? Third, which is the effect of each 
category of pictures on the communication between students during MPS? 

METHOD
The study was qualitative in nature and employed an interaction process, which 
included both oral and written responses to tasks, based on the communication model 
introduced by Weber-Kubler (1981). Eight students of Grade 6, presenting high 
performance in mathematics, participated in the study. Four problems corresponding 
to the four functions of pictures, mentioned above, were used. The subjects were 
separated in couples and the administration procedure was repeated four times, 
according to the communication model shown in Figure 1 below.  
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Stage   3 Stage   1 

The communication model allowed for the observation of the way students work and 
interact, and helped us determine whether students solve and communicate each 
problem with or without the use of the picture accompanying it. Specifically, the 
researcher initially described verbally the text of the problem and the relevant picture 
to Student 1, who tried to solve the problem. When he finished, he was given the 
written form of the problem along with the relevant picture and allowed to modify his 
previous solution or solve the problem again from the beginning, if necessary. Next 
to this, Student 1 described the particular problem to Student 2, playing the role of the 
researcher and the previous procedure was repeated, as shown in Figure 1.

Figure 1: The procedure of the communication model 

During the communication process, students could use paper and pencil in order to 
present their solution procedures, in written form, before and after the use of the 
picture. They were asked to explain and justify their solution strategies and determine 
whether the picture was useful for solving the problem, and if so, in what way. Each 
experiment lasted nearly 80 minutes for each couple and was recorded. 
The tasks, which were based on mathematical problems used in recent studies or 
publications, are the following:
1. Mrs Brown put her students into groups of 5, with 3 girls in each group.  If Mrs 
Brown has 25 children in her class, how many boys and how many girls does she 
have?  (Misailidou, 2003)
The picture, which accompanied the problem, was decorative, and just represented a 
boy and a girl. 
2. Find the weights of the three items: a tetrahedron, a sphere and a cube, based on 
the information shown in the picture. (Olson, 1998)
The picture (informational) consisted of all the information of the problem. It 
represented different combinations of the items on three scales: on the first scale there 

Failure 

Stage    4 Stage   2 

Success

Researcher  
(Oral
description of 
the problem) 

Student 1- 
(Oral 
description of 
the problem 
based on the 
text or/and the 
picture)

Student 2 
(Feedback through
the picture and the 
written text of the 
problem-New
solution if needed)

Student 1 
(Feedback through
the picture and the 
written text of the 
problem-New
solution if needed)

 Student 1 
(solution)

Student 2- 
(solution)
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were a tetrahedron, a cube and a sphere and the indication was 23 kg, on the second 
scale there were two cubes and two spheres and the indication was 22 kg, and on the 
third scale there were two tetrahedrons and a sphere and the indication was 28 kg.
3. A man planted a tree at each of the two ends of a straight path. He then planted a 
tree every 2 m along the path. The length of the path is 10 m. How many trees were 
planted at the path altogether? (Booth, & Thomas, 2000) 
The picture of this problem had a representational role. It represented a path with two 
trees, one at each end of the path.  
4. Last week 10 campers camped at the mountain. Each day 8 loaves of bread were 
available for them to eat. This week 15 campers camped at the mountain. How many 
loaves are there available for them for the day? (Misailidou, 2003) 
The picture had an organizational role for the problem. A horizontal line separated 
the data concerning the campers and the loaves last week and the corresponding data 
this week. Above the line, on the left, there were 10 campers arranged in three rows 
(4 campers in the first and 4 in the second row and 2 campers in the third row) and, 
on the right, there were 8 loaves in three rows (3 loaves in the first row, 3 in the 
second and 2 in the third row). Below the line, on the left, there were 15 campers in 
four rows (4 campers in each of the first three rows and 3 campers in the forth row) 
and on the right there was a question mark.
As regards the analysis of the data, the following criteria were taken into account for 
determining the effect of the pictures on MPS: i) whether students used the 
accompanied picture by acting on it or by observing it in order to solve the problem, 
ii) whether they confronted internal conflicts by using the picture, and iii) which 
method/s (visual, analytic or both) they used for the solution of each problem. In 
regard with the communication process, it was examined whether students, who 
articulated the problem to their partners, used elements of the picture in their verbal 
description.

RESULTS
The effect of the decorative picture on MPS was found to be insignificant, since it did 
not provide any information or feedback for the solution of the problem. All the 
students overlooked the use of the particular picture in their solution procedures. In 
particular, six students used analytic methods, whereas two students applied 
visualization strategies, by drawing their own pictures or diagrams, which seemed to 
be more helpful than the decorative picture. For example, S8 constructed five 
rectangles representing the groups, and wrote inside each one of them the numbers 3 
and 2, referring to the girls and the boys, respectively. The following statement made 
by this student indicates the trivial role of the decorative picture: “The picture of the 
problem didn’t help me at all. My drawing helped me more. By drawing the groups, it was 
easier for me to find the number of boys and girls”.
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On the contrary, the effect of the informational picture was fundamental in problem 
solving, since it consisted of all the data needed for the solution of the problem and, 
therefore, was used by all the students. The most common method for the solution of 
this problem was the trial and error strategy, which was employed by seven students. 
This strategy involved the active use of the picture as a representational aid, which 
assisted students to organize their thinking, for example, by noting down next to each 
item a number indicating its weight. Thus, the use of the picture did not just provide 
the data of the problem, but it also supported the formation of conflicts between the 
number combinations proposed by the students, and the correct answers. The only 
student (S6) who applied a systematic method to find a solution for the problem, by 
making use of the picture, stated: “It (the picture) helped me find that one cube and one 
sphere weigh 11 kg. At the first scale the cube and the sphere weigh 11 kg, so the 
tetrahedron weighs 12 kg. As for the third scale, since the tetrahedron is 12 kg, 12 plus 12 
equal 24, so 4 kg are left, and that’s the sphere.” S2 was the only student who used, 
almost exclusively, the analytic method to resolve the particular problem. By 
listening to the description of the problem, she wrote down only the indication of 
each scale. Then, she reached successfully to a solution by applying mentally the trial 
and error method, without using any picture. Thus, S2 used the informational picture 
only for collecting the data needed for the solution and not as a means of 
representation, or feedback for the solution process, like the other students. 
The representational picture was used in an active manner by all the students in 
problem solving. This is attributed to the spatial ability that was essential for the 
understanding and the solution of the particular problem. All the students employed 
visual methods by using the given picture, which in most cases caused internal 
conflicts. Specifically, the initial intuitive way of thinking before the presentation of 
the picture, involved the application of the operation of division 10:2=5. By using the 
picture, students could visualize (actively) the spatial arrangement of the trees at the 
path, which enabled them to figure out the correct number of trees. In particular, 
seven students drew five trees at the path and they, subsequently, realized that the 
distance between the trees was not 2m. As a consequence, they ended by drawing 
four trees along the path, which was the correct solution. The positive influence of 
the representational picture was evident in the communication between the students, 
as well. In particular, during a communication experiment, in the description of the 
problem to her partner (S2), S1 altered, non-consciously, the data of the problem: “A
man planted 2  trees at each end of a path. Then he planted a tree every 2 m. The length of 
the path is 10 m. How many trees did the man plant at the path altogether?” Before the 
presentation of the picture, based on the incorrect data, S2 conceived the path as a 
rectangle and doubled the trees of each side. By observing the picture given to her, S2 
managed to resolve the problem correctly, without any difficulties. Thus, it can be 
asserted that the picture facilitated the communication between the students. 
The organizational picture had also an important role in problem solving. The use of 
the picture enabled five students, who had employed additive strategies or 
inappropriate multiplicative strategies before the presentation of the picture, to use 
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proportional reasoning by applying correct multiplicative structures. Students who 
experienced the particular internal conflict made use mostly of visual methods. In 
particular, they acted on the picture by reorganizing the elements of it, either mentally 
or practically, so that the 15 campers below the line would be separated into two 
groups, one of 10 campers and another one of 5 campers, which would be matched 
with the corresponding groups of loaves (8 and 4). For example, S1 who applied the 
particular procedure, explained: “10 campers get 8 loaves, so 10 of the 15 campers would 
also get 8 loaves. 5 campers are left. I’m thinking that if 10 campers get 8 loaves, then 5 
campers get half as much that makes 4 loaves”.  Nevertheless, for S5 the picture created 
an obstacle. Influenced by the arrangement of the elements of the picture, he applied 
an inappropriate pattern in his solution process. Specifically, he stated that 4 campers 
have 3 loaves next to them, thus the number of loaves could be found by subtracting 
1 from the number of campers (4-1=3). He subsequently applied the pattern to all the 
rows of the 15 campers and ended with a wrong solution. Three students focused on 
analytic methods, since they used directly the correct proportion in their solution 
processes, without using the picture.
Students’ views in regard with the role of the pictures in MPS depended on the 
pictures’ contribution in their solution procedures. Specifically, all students stated 
that the decorative picture could not help in any way; on the contrary, they all 
recognized that the representational picture had a supportive role in their solution 
procedures. As for the informational picture, only some students realized that without 
the picture they could not begin the solution of the problem. This is attributed to the 
fact that, at first, the picture was presented “orally” to them, so they initially dealt 
with the problem without using the picture visually. Finally, only the five students 
who used it in their solution procedures acknowledged the positive effect of the 
organizational picture on MPS. 
In regard with the effect of the different categories of pictures to the communication 
process, it can be asserted that the need for describing the decorative, representational 
and organizational picture was trivial. This was evident from the fact that students 
articulated the problem to their partners, without any reference to the particular types 
of pictures involved. On the contrary, the description of the informational picture 
contributed significantly to the communication process, since it provided all the data 
of the problem.  

DISCUSSION AND IMPLICATIONS 
Findings of the present study revealed that the representational, informational and 
organizational picture, but not the decorative one, had a significant effect on MPS. 
The use of the pictures leaded frequently students to internal conflicts, which in turn 
enabled them to find correct solutions for the problems. The decorative picture did 
not have a substantial role on students’ responses in MPS or the communication 
process. This finding gives support to Carney and Levin’s (2002) view, that 
decorative pictures do not enhance the understanding or any application to the text. It 
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was also found that the arrangement of the elements of the picture may cause 
difficulties in MPS. This finding is in line with the argument of Colin et al. (2002), 
who point out that the spatial position of the elements of a picture, may lead 
individuals to inappropriate inferences.  
Most students’ strategies involved the use of either visual or analytic methods, 
focusing on the method that better matched their abilities and the problem or picture 
involved. The visualization process which was made explicit in two different ways, 
with students’ interaction with the given picture or the generation of a drawing by 
them, was meaningful and facilitated significantly MPS. Students interacted with the 
given pictures in two ways, by observing them or by acting on them (Thomas, & 
Yoon Hong, 2001). Observation was detected mostly in the case of the decorative 
picture, while active processing was identified mainly in the case of the 
representational picture. Interaction with the informational and the organizational 
picture varied; it was active for some students and observational for others. The 
observed diversity of students’ responses concerning the visualization process may be 
attributed to the interaction between the student and the stimulus, which in the 
present study refers to the problem and the picture involved. This interactive 
relationship depends on students’ preferences, and their spatial and visualization 
abilities, i.e. their competence to recall, generate, choose and operate appropriately 
with the visualization (Bishop, 1989). 
As for the communication process, the primary means of communication was the 
verbal use of language. The organizational and representational pictures had a 
helpful, supportive and complementary role, and aided in providing precisions, 
details and feedback for the text and its oral description. The decorative picture had 
no effect on communication, whereas the informational picture was not only useful, 
but also essential and substantial in problem solving. 
To sum up, from the present study, it is clear that effective problem solving, which 
makes use of pictures, depends on the relationship between the picture and the 
problem (function the picture serves in the problem) and the students’ previous 
knowledge and abilities. Therefore, it would seem important that teachers select 
pictures based on their function in MPS. Another implication for teachers is to take 
into consideration the students’ preferences for the method/s they use in MPS, in 
order to encourage them to develop the strategies they are not sufficiently competent 
at. Moreover, findings concerning the function of decorative pictures in MPS 
underline that the use of decorative pictures in MPS should be handled with great 
attention in regard with the development of mathematics textbooks, materials, 
resources and instruction.
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MATHEMATICAL MODELLING WITH YOUNG CHILDREN
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This paper addresses the first year of a three-year, longitudinal study which 
introduces mathematical modeling to young children and provides professional 
development for their teachers.  Four classes of third-graders (8 years of age) and 
their teachers participated in the first year of the program, which involved several 
preliminary modeling experiences followed by two comprehensive modeling 
problems over a span of 6 months. Regular teacher meetings involving preparatory 
workshops as well as reflective analyses were conducted. Analyses of children's 
responses (in group situations) to one of the modeling problems shows the 
spontaneous ways in which children engaged in sense making, problem posing, 
hypothesizing, and  mathematizing (including representing). It is argued that 
modeling tasks of the present type are powerful vehicles for developing important 
mathematical ideas and problem-solving processes in the early school years.

INTRODUCTION
Children today are facing a world that is shaped by increasingly complex, dynamic, 
and powerful systems of information in a knowledge-based economy (e.g., 
sophisticated buying, leasing, and loan plans that appear regularly in the media).
Being able to interpret and work with complex systems involves important 
mathematical processes that are under-emphasized in numerous mathematics 
curricula, such as constructing, explaining, justifying, predicting, conjecturing and 
representing, together with quantifying, coordinating, and organising data. Dealing 
with such systems also requires students to be able to work collaboratively on multi-
component projects in which planning, monitoring, assessing, and communicating 
results are essential to success (English, 2002; Lesh & Doerr, 2003). The primary 
school is the educational environment where all children should begin a meaningful 
development of these processes and skills (Jones, Langrall, Thornton, & Nisbet, 
2002).  However, as Jones et al. note, even the major periods of reform and 
enlightenment in primary mathematics do not seem to have given most children 
access to the deep ideas and key processes that lead to success beyond school. 
In the study addressed here, we introduced 8-year-olds to model-eliciting activities 
that focus on structural characteristics of phenomena (e.g. patterns, interactions, and 
relationships among elements) rather than surface features (e.g. biological, physical 
or artistic attributes). Our longitudinal study addresses both the children's and 
teachers’ growth across three years; however, for this paper we consider the 
development of the children’s mathematization processes as they worked their first 
modeling activity. One of our initial goals was to introduce the children (and their 
teachers) to mathematical modeling. To this end, we developed and implemented a 
number of preliminary modeling activities, which we describe later.
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MATHEMATICAL MODELLING FOR YOUNG LEARNERS
Traditionally, students are not introduced to mathematical modeling until they reach 
secondary school (Stillman, 1998). However, the rudiments of mathematical 
modeling can and should begin much earlier than this, where young children already 
have the foundational competencies on which modelling can be developed 
(Diezmann, Watters, & English, 2002; Lehrer & Schauble, 2003; NCTM, 2000). 
Young children’s problem-solving experiences have traditionally been limited to 
problems in which children apply a known procedure or follow a clearly defined 
pathway. When it comes to solving these problems, the “givens,” the goal, and the 
“legal” solution steps are usually specified unambiguously—that is, they can be 
interpreted in one and only one way.  This means that the interpretation process for 
the child has been minimalised or eliminated. The difficulty for the child is simply 
working out how to get from the given state to the goal state.  While not denying the 
importance of these existing problem experiences, they do not address adequately the 
mathematical knowledge, processes, representational fluency, and social skills that 
our children need for the 21st century (English, 2002; Steen, 2001). An important 
component of problem solving in today’s world is interpreting the problem situation, 
dealing with ambiguous or incomplete information, identifying constraints on 
solutions, and visualising and evaluating possible end-products.   
Mathematical modeling takes children beyond basic problem solving where meaning 
must be made from symbolically described word problems, to authentic situations 
that need to be interpreted and described in mathematical ways (Lesh, 2001). At the 
same time, these modeling activities encourage multiple solution approaches and call 
for multifaceted products.  Another important feature of these activities is that key 
mathematical constructs are embedded within the problem context and are elicited by 
the children as they work the problem. Children not only have to work out how to 
reach the goal state but also have to interpret the goal itself as well as all of the given 
information, some of which might be displayed in representational form (e.g, tables 
of data). Each of these aspects might be incomplete, ambiguous, or undefined; 
furthermore, there might be too much or too little data, and visual representations 
might be difficult to interpret (as in real-world situations).  When presented with 
information of this nature, children might make unwarranted assumptions or might 
impose inappropriate constraints on the products they are to develop.
Modeling activities for children are also social experiences (Zawojewski, Lesh, & 
English, 2002) and are specifically designed for small-group work, where children 
are required to develop explicitly sharable products that involve descriptions, 
explanations, justifications, and mathematical representations. Numerous questions, 
conjectures, conflicts, revisions, and resolutions arise as children develop, assess, and 
prepare to communicate their products.  Because the products are to be shared with 
and used by others, they must hold up under the scrutiny of the team members.   
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RESEARCH DESIGN AND APPROACH

The study is using multilevel collaboration, which employs the structure of the 
multitiered teaching experiments of Lesh and Kelly (2000), and incorporates Simon’s 
(2000) case study approach to teacher development.  Among the features of 
multilevel collaboration is a focus on the developing knowledge of all participants, 
who work as co-investigators operating at different levels of learning (English, 2003).
At the first level of learning, children work on sets of modelling activities, which 
engage them in constructing, refining, and applying mathematical models. At the 
second and third levels respectively, research students and classroom teachers work 
collaboratively with the researchers in preparing and implementing the child 
activities. At the fourth level, the researchers observe, interpret, and document the 
knowledge development of all participants. Multilevel collaboration is most suitable 
for this study, as it caters for complex learning environments undergoing change, 
where the mechanisms of development and the interactions among entities are of 
primary interest (Salomon, Perkins, & Globerson, 1991).

Participants: Four third-grade classes (8 years old) and their teachers participated in 
the first year of the study. The classes represented the entire cohort of third graders in 
a school situated in a middle-class suburb of Brisbane, Australia. The school 
principal and assistant principal provided strong support for the project’s 
implementation. They were informed of the progress of the study, and attended some 
of the workshops and debriefing meetings that we conducted with the teachers.

Procedures and activities: We conducted two half-day workshops with the four 
participating teachers in term 1 to introduce them to the modelling experiences and to 
plan more thoroughly the year’s program. Two more workshops were conducted 
during the middle and at the end of the year for planning and reflective analysis of the 
children's and teachers’ progress. Several shorter meetings were also conducted 
throughout the year, including those before and after the teachers had implemented 
each activity. The contexts of the modelling activities were designed to fit in with the 
teachers’ classroom themes, which included a study of food, animals, and flight.

Preliminary modelling activities were implemented by the teachers towards the end 
of first term and part of second term. These activities were designed to develop 
children's skills in: (a) interpreting mathematical and scientific information presented 
in text and diagrammatic form; (b) reading simple tables of data; (c) collecting, 
analysing, and representing data; (d) preparing written reports from data analysis; (e) 
working collaboratively in group situations, and (f) sharing end products with class 
peers by means of verbal and written reports. For example, one activity involving the 
study of animals required the students to read written text on “The Lifestyle of our 
Bilby,” which included tables of data displaying the size, tail length, and weight of 
the two types of Bilbies. Children answered questions about the text and the tables. In 
another activity focussing on food, the children read about the development of 
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chocolate from the growth of the cocoa bean to the manufacture of various types of 
chocolates. Tables of data on the ingredients found in various chocolate types were 
included. After answering a number of questions on the given information, the 
children implemented their own survey about chocolate consumption, gathered and 
analysed the data, and then reported their findings to their peers. 
During the remainder of second term and for all of third term, the teachers 
implemented, on a weekly basis, the main model-eliciting activities. Each lesson was 
of 40 minutes duration. After an initial whole class introduction, the children worked 
independently in groups of 3 to 4 to complete the activity. The first model-eliciting 
activity, which we address here, was titled “Farmer Sprout.”  It comprised a story 
about the various types of beans the farmer grew, along with data about various 
conditions for their growth.  After responding to questions about the text, the children 
were presented with the “Butter Beans” problem. Here, the children had to examine 
two tables of data displaying the weight of butter beans after 6, 8, and 10 weeks of 
growth under two conditions (sunlight and shade; see Table 1).  
Table 1. Data presented for the Beans Problem (Students were advised that the farmer had grown 4 
rows of butter beans under two light conditions) 

Sunlight Shade

Butter Bean
Plants Week 6 Week 8 Week 10

Butter Bean
Plants Week 6 Week 8 Week 10

Row 1 9 kg 12 kg 13 kg Row 1 5 kg 9 kg 15 kg 

Row 2 8 kg 11 kg 14 kg Row 2 5 kg 8 kg 14 kg 

Row 3 9 kg  14 kg 18 kg Row 3 6 kg 9 kg 12 kg 

Row 4 10 kg 11 kg 17 kg Row 4 6 kg 10 kg 13 kg 

Using the above data, the children had to (a) determine which of the conditions was 
better for growing butter beans to produce the greatest crop. In a letter to Farmer 
Sprout, the children were to outline their recommendation and explain how they 
arrived at their decision; (b) predict the weight of butter beans produced on week 12 
for each type of condition. The children were to explain how they made their 
prediction so that the farmer could use their method for other similar situations. On 
completion of the activity, each group reported back to the class.
All whole class interactions were videotaped, while the group work was videotaped 
(one group per classroom) and audiotaped (2 groups per classroom). We also took 
field notes of all the class and group activities. The teacher meetings were audiotaped 
and transcribed, along with the class and group activities.

SOME FINDINGS: CHILDREN'S RESPONSES TO THE BEANS PROBLEM 
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Prior to addressing some findings, it is worth commenting that each of the teachers 
established classroom norms for group work and for class reporting. For example, 
each group of children had a group-appointed manager who was responsible for 
organising materials and keeping the group on task. The importance of sharing ideas 
as well as explaining answers was also emphasised.   First we consider some general 
observations of the children's progress on the Butter Beans Problem and then 
examine the work of one group of three children. 

In general, we noted an initial tendency for the children to want to record an answer 
from the outset, without carefully examining and discussing the problem and its data. 
The children had to be reminded to think about the given information and share ideas 
on the problem prior to recording a response.  We also observed the children 
oscillating between analysing the data and discussing at length the conditions 
required for growing beans. At times, the children became bogged down in these 
practical discussions, with their progress slowing as a result. This point is revisited 
shortly.    

We noted at least three approaches that the children adopted in analysing the data in 
Table 1.  The first approach was to focus solely on the results for week 10 and 
systematically compare rows 1 to 4 for each condition (i.e., compare 13 kg with 15 
kg, 14 kg with 14 kg and so on). A variation of this approach was to make the 
comparisons for each of weeks 6 and 8 as well. A second approach was to add up the 
amounts for week 10 in each condition and compare the results. A third but 
inappropriate variation of the last approach was to sum all of the weights in each 
table and compare the results. As one child explained, “Sunlight has 146 to 118 
(shade). So plants are in sunlight.” A further approach (again, inappropriate) was to 
add the amounts in each row for each condition and compare the end results (i.e., 9kg 
+ 12kg + 13kg for sunlight and 5kg + 9kg + 15kg for shade, and so on).

As the children explored the data, they were looking for trends or patterns that would 
help them make a decision on the more suitable condition. They were puzzled by the 
anomalies they found, and resorted to their informal knowledge to account for this: 

Students collectively: 10 against 6, 11 against 10, and 17 against 13. 
Student 1:   So this is obviously better than that, but working out why is the problem. 
Student 2: Yes, because the more sunlight the better the beans are. For some reason... 
Student 1: In some cases, it’s less; but in most cases, it’s more the same.
Student 3: It would depend on what type of dirt it has been planted in. 
Student 2: I’ve got an idea. Perhaps there were more beans in the sunlight.
Student 3: We’re forgetting one thing. Rain. How much rain! 

The above group of students spent quite some time trying to suggest reasons for the 
trends in data and became waylaid by practical issues. Nevertheless, in doing so, the 
children engaged in considerable hypothetical reasoning and problem posing, for 
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example: “I’ve got an idea. If we didn’t have any rain, the sunlight wouldn’t …it 
wouldn’t add up to 17 (kg). And, if we didn’t have any sunlight, it wouldn’t be up to 
17 either. But if we had sunlight and rain….” 
For the remainder of this lesson, the above group of students cycled through finding 
practical reasons for why they thought sunlight was better, re-examining the sets of 
data, and attempting to record their findings. The children did not make substantial 
progress during this lesson largely because of their focus on finding reasons for the 
trends in the data. As one child explained to the researchers, “But our problem is, we 
thought it would be because of the rain. It can’t get in as well with the shade cloth on. 
But then we found these results. And we’ve got a problem. We can’t work out why 
this has popped up. So we’re stuck here.”
Considerable progress was made in the second lesson, however, after one of the 
children (Amy) directed the others to focus solely on the data.  The child directed 
their attention to row 3, week 10, where the difference was the greatest (“Here’s the 
best and here’s the worst”). Amy attempted to show the other group members this 
difference by drawing a representation of the two amounts. Her representation took 
the form of a simple bar graph (“picture graph”, as she described it) with the first bar 
coloured yellow to represent the 18kg (sunlight) and the second bar coloured black to 
represent the 12kg (shade).  In directing her peers’ attention to her diagram, Amy 
explained, “O.K., so that would be about the sunlight there…..what I am trying to say 
is the shade is about half as good as sunlight.” Her peers, however, were not paying 
attention so she decided to pose this question to bring them back on task: “This here 
is sunlight and this here is shade. Which one’s better?” Still not happy with her peers’ 
lack of enthusiasm, Amy posed a more advanced question for her peers: 

 Amy:  Oscar, if this long piece was shade, and the short piece was sunlight, and they 
represented the weight of the beans, which one would be better? 

Oscar:  This. 
Amy:  No, shade would be because it’s bigger. A bigger mass of kilograms. 

The difficulty for many of the children was completing the letter for Farmer Sprout. 
As Amy explained to the teacher, “You see, I’ve drawn a picture graph and we’ve 
worked out the answer, but we can’t put it into words... I know! We can draw this 
(her representation) on our letter and explain what it means in words. And that’ll get 
us out of it.”  The group finally produced the following letter, choosing to focus 
solely on the largest difference between the conditions:

Dear Farmer Sprout, We have decided sunlight is the best place to grow Butter Beans. 
Because if this was the best (an arrow pointing to the representation) and this the worst 
(another arrow pointing to the representation), black = shade and yellow = sun. 18kg 
and 12kg. It is obvious that sunlight is better because 18 is higher than 12 by six. We 
came to this decision because sunlight maenley (sic) projuced (sic) more kg or the 
amount of kgs. Yours sincerely, Mars Bars (name of the group).

In reporting their findings to the class, the above group commented that “Shade 
produced about half as much as sunlight altogether.” When asked where they 
obtained their information for this conclusion, Amy explained, “Well, we basically 
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added all of this up (week 10 data for each condition) and we found that shade 
produced about half as much as sunlight altogether.”  
In responding to the second component of the Butter Beans Problem, the children 
generally relied on patterns in the data to predict the mass of the beans after 12 
weeks. For example, another group in Amy’s class reported their predictions for the 
sunlight condition as follows: “Our findings show that in row 1, week 12, you will 
get 15 to 17 kilograms, and in week 12, row 2, you’ll get 17 kilograms, and in row 3, 
week 12, you will get 19 to 21 kilograms, and in week 12, row 4, you shall get 18 to 
20 kilograms. That’s what we think for sunlight.” When asked how they got these 
findings, the children explained, “The data, because we went to week 10 and we 
counted 2 on….because they’ve sort of gone up like, in twos and it was another two.”
It is interesting to note that in one class discussion on the likely mass of the beans at 
week 12, some children again extrapolated beyond the data and claimed that at week 
12 the beans would be too old and would probably die.
CONCLUDING POINTS
The model-eliciting activities used in our study encourage young children to express 
ideas related to structural characteristics of meaningful phenomenon. We saw varying 
levels of sophistication in the mathematization processes of the children. There 
appeared to be several elements that either facilitate or constrain the growth of these 
processes.  First is the ability to interpret and understand data presented in various 
representational formats. Although the majority of children had few difficulties here, 
we observed a few children who misinterpreted what was being measured (i.e., they 
thought that the number of kilograms referred to the amount of sunlight rather than 
the mass of beans). A second element was an intuitive knowledge and understanding 
of the mathematical concepts inherent in the task, such as the notions of change and 
rate of change. Intuitive notions of aggregating and averaging were expressed by 
some of the student groups. A third element was the issue of existing personal 
knowledge versus task knowledge. Being able to distinguish between the two 
knowledge forms, and knowing how they can both help and hinder solution facilitate 
task success. We see the development of such metacognitive and critical reasoning 
skills as important components of these modelling activities.  Fourth, the modelling 
tasks provided rich opportunities for children to express ideas in multiple 
representations. We saw how children used text, diagrams, and verbal explanations to 
engage in effective learning in a socially mediated environment. 
There appear to be several implications for teachers. First children who engage in 
social learning contexts verbalise their thinking and hence make explicit their 
knowledge of content and processes. Opportunities thus exist for teachers to extend 
children's knowledge in areas of need. At least one of the participating teachers often 
capitalised on discussions to make links to historical information that the children 
may have previously learned. Some links were made to scientific or social studies but 
few explicit connections were made to mathematics. The modelling activities were 
embedded in a broader theme being explored by the class but explicit links were 
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often not taken up by the teachers who appeared to assume that the activity needed to 
be isolated for the benefit of the researchers. Opportunities for children to actually 
implement the activity described in the modelling task can help young children who 
might lack some of the related conceptual knowledge. In the present case, 
undertaking the task of comparing growth conditions of plants (either in real life or 
via computer simulation) can provide concrete representations that facilitate model 
development.
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This research report presents a study of the work of agronomy majors in which an 
extension of linear models to non-linear contexts can be observed. By linear models 
we mean the model ya.x+b, some particular representations of direct 
proportionality and the diagram for the rule of three. Its presence and persistence in 
different types of problems and teaching contexts have drawn us to search for 
alternative explanations; we employ a qualitative methodology using individual 
interviews and students’ mathematical written tasks. The data allowed us to make an 
in-depth descriptive analysis of students' strategies when solving non-linear problems 
and their reasons to decide the model to be applied. 

THEORETICAL AND EMPIRICAL BACKGROUND
This study is related to the mathematical understanding of agronomy majors from the 
University of Córdoba (Argentina). It extends a previous research (Esteley, Villarreal 
and Alagia, 2001) in which we focus on the documentation, description and analysis 
of a phenomenon that occurs among these students, which we denominate extension 
of lineal models to non-linear contexts or overgeneralization of linear models. By 
linear models we mean the model ya.x+b, some particular representations of direct 
proportionality and the diagram for the rule of three. Such a phenomenon occurs 
when the resolution of certain mathematical questions relating two variables, is 
solved applying linear models, even though the situation, from the teacher's point of 
view, is obviously a non-linear one. The presence of this phenomenon doesn't 
necessarily imply that the students are conscious that they are applying linear models 
in non-linear contexts. 
This phenomenon has been studied with students of the elementary school, with focus 
on the particular representation of direct proportionality and it is known as linear
misconception, illusion of proportionality or linearity and also proportionality  trap 
(Behr, Hare, Post & Lesh, 1992). The tendency of overgeneralising the use of linear 
models beyond its range of validity is also present in secondary school pupils. The 
extensive studies of De Bock, Von Doorem, Janssens & Verschaffel (2002), De
Bock, Von Doorem, Verschaffel & Janssens (2001) and De Bock, Verschaffel & 
Janssens (1998), carried out with 12-16-year old students, reveal a strong tendency to 
apply linear models to solve proportional and non-proportional word problems about 
the relationship between lengths and perimeters/areas/volumes of similar figures or 
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solids. These authors carried out research based on written tests and some in-depth 
interviews. The explanation for the illusion of linearity has been investigated  mainly 
from the perspective of the error as a  learners' deficiency, and an intuitive approach 
towards mathematical problems, inadaptative beliefs and attitudes or poor uses of 
heuristics are indicated as factors of the student's unwarranted proportional reasoning
(Van Doren, De Bock, De Bolle, Janssens & Verschaffel, 2003). The literature is 
extensive reporting on  primary and secondary school students' illusion of linearity 
and there exists agreement in describing the phenomenon as persistent and resistant 
to change. Nevertheless studies on this phenomenon among university students are 
not frequent, even though its presence and persistence have been frequently observed 
at that level within diverse types of problems and contexts. That situation led us to 
carry out an exploratory study (Esteley et al, 2001) to document, describe and analyze 
the presence of the phenomenon of overgeneralization of linear models among 
Argentinean 18-20-year students, which studied Agronomy in the University of 
Córdoba. We analyzed, through the students' written productions, the types of 
problems that were solved by extension of a linear model,  the strategies followed by 
the students and the difficulties of interpretation that could be associated with the 
statements of some problems 
At this point, we decided to yield explanations beyond  the notion of the error as 
students' deficiency or fault. Therefore, in our studies, the errors were assumed as 
symptoms of the conceptions underlying the students' mathematical activities, in the 
sense of Ginsburg (1977) or Brousseau (in Balacheff, 1984). After our exploratory 
study, briefly described above, we decided to deepen our investigation, performing 
interviews with those students that, in our previous studies, had applied linear models 
to solve non-linear problems. In this sense,  the studies of Confrey (1991, 1994) and 
Confrey & Smith (1994) addressing questions about the epistemological value of the 
students' mathematical constructions are paramount for us. Confrey (1991) argues 
that to understand the students' actions  implies to be introduced in their perspective  
and not to presuppose that it coincides with that of the teacher/researcher. The 
students' answers that stray from the expectation of the teacher/researcher, can be 
legitimate as alternative or valid and effective in other contexts. To encourage the 
student to show their points of view implies for the teacher/researcher an opportunity 
to glimpse at the students' perspectives and to question her/his own, examining them 
through the ideas of the students.

RESEARCH METHODOLOGY 
The research methodology was qualitative (Lincoln & Guba, 1985) since we aimed to 
get in-depth understanding of the students' thinking processes when they extend 
linear models to non-linear contexts. Individual semi-structured interviews were 
performed with 18-20-year old agronomy majors from the University of Córdoba 
(UNC) that were attending a calculus course. These students had shown the 
appearance of the phenomenon of interest in our previous studies. We  carried out a 
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single an-hour-long interview with each student. The interviewer was not the 
students' teacher. All interviews were audio-taped and paper, pencil, and a scientific 
calculator were at the interviewees' disposal. 
The interviews were structured around the activities and aims we describe next. 
Activity 1) Ask the student to explain the way she/he had solved the Problem A (see 
Figure 1) in our previous study (Villarreal et al, in press) with the aim of elicit the 
student's strategies and reasons to apply a linear model in a non-linear context. 
Activity 2) Propose to solve Problem B (see Fig. 1) with the aim of elicit the student's 
strategies while solving a new non-linear word problem. Activity 3) Ask to calculate 
the height of the plant in Problem B at any time with the aim of challenge the student 
to produce a general model and verify the consistency of the student's strategy. In all 
the activities we asked the students to think aloud (Ginsburg, Kossan, Schwartz & 
Swanson, 1982) while solving the problems. The selected problems are typical in the 
introductory mathematics course for the agronomy majors from UNC. 
We did an inductive/constructive analysis (Lincoln & Guba, 1985), since we didn't 
raise a priori hypothesis, but rather, we generate conjectures from the gathered data. 
The analysis of the students' strategies and solutions to the problems was not carried 
out in terms of "right or wrong". Although conceptions not accepted as correct by the 
mathematicians can be indicated, the emphasis was on students' thinking processes, 
without making comparisons, but trying to listen closely (Confrey, 1994). 

Problem A) Say if the following statement is true or false and justify your 
answer. An insect, that weighs 30 gr. when being born, increases its 
weight at 20% monthly. Then, its weight after two months is 43,2 gr. 

Problem B) If a plant measures, at the beginning of an experiment, 30 
cm and every month its height increases 50% of the height of the 
previous month, how much will it measure after 3 months?

Figure 1: Problems A and B 

RESULTS AND ANALYSIS 
In this report we decided to present the results related to the interviews performed  
with Santiago and Clelia. In the selected excerpts, we underlined some of the 
students' assertions to indicate the words we believe support our analysis; we include, 
between brackets, explanations to better understand the students' expressions or 
words that give continuity to the text; [...] indicates long pauses, meanwhile short 
pauses are represented with simple dots. 

Santiago 
Santiago  had solved Problem A as follows: he wrote y(t) = 30 + 6.t,  he calculated 
y(2)  and finally he answered that the statement was false because "42 gr  43.2gr"
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After looking at  his written solution, during activity 1, Santiago said: "I wanted to do 
it using a function ... and not with a rule of three [...] Then, I realized that it wasn't a 
linear function because that [he refers to the insect] hasn't an unlimited growth, it 
was an exponential or something like that". When Santiago rejected his linear 
solution and gave his justification, it became apparent to us that he was using 
biological reasons instead of mathematical ones to select a new model. Although 
Santiago realized that the insect growth was not linear but exponential, he stated: 
"When I did realized that it was an exponential, I also realized that I wasn't able how 
to do it, because, I don't know [...] it seems to me that I don't have the tools yet".
Santiago considers the rule of three as a mechanical procedure with a low 
mathematical status, at least, for university students and that is why he decided to use 
the linear function y(x) = a.x + b. We can also point out that the student use 
biological reasons to reject his initial linear solution and try a different approach, 
although he considered conditions not given in the problem statement. We could also 
recognized these aspects when Santiago solve Problem B), showing a strong 
consistency.
During activity 2) and, after reading Problem B), the following dialogue occurred: 

Santiago: the height of the plant is 30 cm at the beginning of the experiment, so, that 
is the “base”, and each month it grows up 50% of the height it had the 
previous month … 

Interviewer:  yes 
Santiago: well, I do it with the rul… well in a sort of mechanical way, the first 

month it would be 30... plus the 50% of 30. [he used the calculator and 
wrote the first line in Fig. 2] In the second month I start at 45 plus 50% of 
45, that would be... [he wrote the second line in Fig. 2] and in the third 
month I start at 67.5 and I do the same [he wrote the third line in Fig. 2] 

30 cm  30 + 15 = 45   1 mes
45 cm  45 + 22.5 = 67.5      2 mes

          67.5 cm  67.5 + 33.75 = 101.25      3 mes  

[1st month] 
[2nd month] 
[3rd month]

Figure 2: Santiago's written solution of Problem B 

When the interviewer asked how to calculate the height of the plant after twelve 
months or at any time t, the next dialogue took place: 

Santiago: I should do it with a function, to make it easier [...] it has to be an 
exponential and... because the growth has to be like this [he makes a 
gesture with his hand indicating an S- like line], it cannot grow up 
indefinitely… besides, because the variable is changing.

Interviewer:  what do you mean when you say “the variable is changing”?
Santiago: because when I get to the first month, I see that it changes, I stop working 

with 30 and I start working with 45 and then, I change from 45 to 67… It 
is like that it is always moving beyond. I should see if there is any ..., no, I 
don’t know if it is possible to have a relationship of growth, no, no, no ... 
if the 45 has the same increment proportion with this… but not… that 
from 30 to 45 it jumps the same, no, neither here, no, I don’t know.  
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Interviewer:  what do you mean with: “it jumps”? 

Santiago explained that he was trying to find a relationship between the height of the 
plant for each month. He talked about a "parameter" that would show the growth. In 
order to get it he drew a line as the one sketched in Fig. 3. The student started 
searching for that "parameter" calculating the following differences: 45 - 30; 67.5 - 
45 and 101.25 - 67.5. Santiago wrote those differences in the second row of numbers 
in the Fig. 3. He indicated that the increment from 30 to 45 was not the same as that 
from 45 to 67.5 and from 67.5 to 101.25. After that, he continued searching for the 
"parameter" but, this time, doing the differences between the values in the second 
row. He calculates 22.5 - 15 and wrote 7.5 on third row (see Fig.3). While working 
with the calculator, he realized that adding 7.5 to 22.5 he wouldn't obtain 33.75. After 
a while, he gave up this strategy and said he should have to look for information in a 
textbook where a solution of a similar problem could appear.  

Figure 3: Sketch of Santiago's line 

Therefore he tried with other models. Firstly, he drew an upward pointing parabola 
and immediately rejected it because of its "unlimited increasing" and "time couldn't 
be negative". Then, he proposed y = ax + b and when the interviewer asked him for 
the value of b, he said it would be "the initial 30 cm" but, he finally said: "That one
[he referred to y = ax + b] doesn't help me, either, since it also has an unlimited 
growth, it must be something tending to a number... something that bends down [he 
drew an increasing graph with an asymptote].  
The graphical representations of a limited growth that Santiago considered are 
consistent with the biological conditions he added to the problems. We should point 
out that his option for searching an additive constant (the "parameter") to model the 
variation of growth finally became an obstacle for him.  

Clelia
Clelia solved  problem A as follows: she wrote the initial weight of the insect as 
pi=30gr, she calculated the 20% of pi using a rule of three (see Fig. 4) and continued 
working as it is shown in Fig. 4. 

30 45 67.5 101.25

15 22.5 33.75

7.5
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30 gr.----------100% pi
6gr. = x------- 20% pi

1 mes pesa 30 + 20 % de 30 = 3 

2 meses pesa = (30 + 20 /100) 2 + 30 gr

12 gr. + 30 = 42 gr 

[In 1 month weights...]  

[In 2 months weights...]

Figure 4: Clelia's written solution of Problem A  

Finally, she concluded that the statement was false since after two months the insect 
would weigh 42 gr. From Clelia's written solution we can infer that, for her,               
(30 + 20/100) is equivalent to 6, and that the implicit model for the insect weight, 
behind her calculations, is w(t)= 6.t + 30. After observing her written solution, Clelia 
said: "I thought on it and then, talking with my classmates, we realized that we had to 
calculate the 20% of the weight, month by month, while the weight was increasing, 
not to the initial weight… we added in that way". Clelia referred to the fact that she 
was assuming that the insect always grows 6 gr. every month.
During activity 2), after Clelia had read Problem B), the following dialogue occurred: 

Clelia: After a month it will measures 30 [...] plus 50% .... of 30... This is for one 
month, and for three months [...] all this times three [she laughed] 

Interviewer:  please, continue 
Clelia:  I should calculate one by one to make it easier... 50% of 30 [she made a 

pause while whispering something inaudible and stopped] 
Interviewer:  you have just said "all this times three", what do you mean by "all this"?
Clelia:  no, it just seemed to me 
Interviewer:  it doesn't matter, when you said "all this", what were you referring to? 
Clelia:  To the 50% of 30 plus 30

At this point, Clelia gave up her approach, probably because it was the same that she 
had used to solve Problem A, and she knew that it wasn't right. After a while, she 
started using a calculator and finding a value for each month as it is shown in Fig. 5. 

Figure 5: Clelia's written solution of Problem B  

When the interviewer asked Clelia to calculate the height of the plant after twelve 
months she answered: "I don't know. We know that plants don't grow unlimited, at 

1er. Mes   30 + 
100
50  30 = 45  [1st month] 

2do. Mes  30 + 
100
50 45 = 52,5 [2nd month] 

3er. Mes 30 + 
100
50 52,5 = 56, 25 [3rd month] 
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some moment they stop growing... Well, I would calculate the 50% of the height from 
the previous month and add [such percentage] to it [referring to the previous height 
of the plant]. After talking about this particular case, Clelia wrote the following 
formulae as a model for the growth of the plant: 

h =30 + (
100
50  x) x = altura del mes anterior [height of previous month] 

In this way, Clelia wrote down an expression in which the height of the plant for each 
month was calculated from its height in the previous month. Finally she couldn’t get 
a height-time expression.  
The interviewer asked to Clelia what she was thinking about when she spontaneously 
took the decision of always adding 30 cm to the percentages she had been calculating 
while solving Problem B (see Fig. 5), and she answered:

Clelia:  The existence of a constant [with emphasis in her voice]. It begins here, 
and to this one... I have to add

Interviewer:  Is that what you were thinking on?
Clelia:  Yes, I always notice that [with strong emphasis in her voice] 

We would like to point out the strong and consistent presence of an initial value (30 
in both problems) to which the student always adds the variation in and weight and 
height.

CONCLUSIONS AND DISCUSSION 
The interviews provided us with relevant information about the strategies and 
thinking processes followed by the interviewees while working with non-linear 
problems. In that sense we point out that Santiago and Clelia share some important 
aspects. Both students chose a linear model to solve problems A, but while Santiago 
explicitly said that he had applied a linear function, Clelia didn't say anything about 
the kind of model she had applied. When the interviewer challenged them to find a 
general model both students regarded the growth (for the insect or the plant) as an 
“additive model” in the form of 30 + (something variable in time). We called it 
additive model since the initial value (either the weight or the height) is always added  
to the next variation. For example, in the case of Santiago he considered y(t) = 30 + 
6.t in Problem A or  y(t) = at + 30 in Problem B. In the case of Clelia she proposed a 
recursive relation that enables her to calculate the height of the plant (of Problem B) 
at time t adding to 30 cm its height at time t-1. Both students introduced biological 
constraints (unlimited increasing), external to the statements of the problems and 
proposed graphical models that were consistent with those biological constrains. The 
additive model and the external conditions finally became  obstacles for obtaining the 
general model that accounts for the situation posed in activity 3. We must recognize 
that the students were able to establish connections with reality, which is considered a 
positive habit for agronomy students. Finally we want to point out that although the 
students had the mathematical tools necessary to construct a general algebraic model, 
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they couldn't get it. This last observation with the results reported suggest that the 
overgeneralization problem is not a trivial one, goes beyond school levels and needs  
a thorough investigation. 
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“Function”, as it is understood today, formulates one of the most important concepts 
of mathematics. Nevertheless, many students do not sufficiently understand the 
abstract but comprehensive meaning of function and problems concerning its 
didactical metaphor are often confronted. The present study examines the 
interpretation of the concept of function among second year students of the 
Department of Education, at the University of Cyprus, and outlines their 
misunderstandings and possible obstacles in fully grasping its meaning. Results have 
shown that students’ perception of function appears in isolated components of 
mathematical ideas associated with the concept of function.
INTRODUCTION
A historical perspective of the way the concept of “function” came to exist in 
contemporary mathematics would reveal centuries of discussions among 
mathematicians. On the other end, the didactical metaphor of this concept seems 
difficult, since it involves three different aspects: the epistemological dimension as 
expressed in the historical texts; the mathematics teachers’ views and beliefs about 
function; and the didactical dimension which concerns students’ knowledge and the 
restrictions implied by the educational system. On this basis, it seems natural for 
students of secondary education, in any country, to have difficulties in 
conceptualizing the notion of function. 
The present work examines the interpretation of the concept of function by second 
year students of the Department of Education, at the University of Cyprus. Since the 
participants come from different secondary school directions, the present 
investigation is likely to reveal various types of misunderstandings. Predominantly, 
these students are prospective primary school teachers, who will in a way transfer 
their mathematical thinking to their future students.  
EPISTEMOLOGICAL DIMENSION AND THE DIDACTICAL METAPHOR 
OF FUNCTION 
The concept of function is central in mathematics and its applications. It emerges 
from the general inclination of humans to connect two quantities, which is as ancient 
as Mathematics. Nevertheless, what directed to the idea of managing unique 
relations, which is accepted in the formal definition of function, was the need for 
calculations, within the framework of Analysis, especially during modernity. Based 
on the definitions of Euler, Bernoulli, and Cauchy, Dirichlet in 1837, concluded in 
the expression “Variable y is said to be a function of variable x defined in the 

1 The participation of P. Spyrou is funded by the University of Athens, Research Program No. 70/4/4921
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interval a<x<b, if to every value of variable x in this interval corresponds only one 
value of variable y, independently from the form of the correspondence”. In this 
definition the concept of variable includes a timeless intelligible election of value 
within the space of real numbers. The set-theoretic definition of Dedeking was the 
next stage (Davis J.P., & Hersh R., 1981). 
Consequently, to sum up, function, as a typical mathematical concept, is a mental 
construction that was integrated rather recently in mathematics. It is a matter of 
synopsis and congregation of different experiences and conceptual tools that 
mathematicians and scientists initially used to solve problems and assemble theories. 
Due to this historical concentration, the notion of function is so abstract that presents 
many difficulties in its didactical metaphor. Different epistemological approaches 
that led to the meaning of function through its long historical evolution are disrupting 
into the teaching guides and textbooks of mathematics in a confusing way. The 
complexity of this didactical metaphor has been a main concern of mathematics 
educators and an active question in the research of mathematics education (Dubinsky 
& Harel, 1992; Sierpinska, 1992; Gomez & Carulla, 2001; Hansson & Grevholm, 
2003). Moreover, the understanding of functions does not appear to be easy, because 
of the diversity of representations associated with this concept, and the difficulties 
presented in the processes of articulating the appropriate systems of representation 
involved in problem solving (Yamada, 2000). Therefore, a substantial number of 
research studies have examined the role of different representations on the 
understanding and interpretation of functions (Thomas, 2003; Zazkis, Liljedahl, & 
Gadowsky, 2003). 
Researchers usually investigate the epistemological obstacles, on the basis of the 
historical study of the concept of function, and propose teaching methods, which aim 
at overcoming these obstacles. In practice, different approaches that are applied in 
mathematics instruction concerning the concept of function result in exposing to the 
students the pieces of a puzzle consisting of a vague set of extracted information, that 
possibly merge at university level in mathematics. Sierpinska (1992) gives a viable 
example of such an approach supporting that formulae, graphs, diagrams, word 
descriptions of relationships and verbal expressions, compose an uncertain schema of 
thoughts.  
We believe that further research regarding the understanding and use of functions by 
university students is needed, so that their difficulties and misconceptions are 
identified. This could lead to planning and applying appropriate and efficient 
instruction at university level, for improving students’ comprehension about 
functions. The present study aims to provide answers to the following research 
questions: a) How do students conceive and use the concept of function? b) How do 
students recognize functions in multiple representations? It should be noted that the 
main concern of the present study is beyond the measurement of the success rate to 
the proposed tasks, and focuses on the connections of students’ conceptions about 
functions, as indicated by their responses to the tasks.
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METHOD
The sample of the study consisted of 164 students who attended the course 
“Contemporary Mathematics” during the first semester of the academic year 2003-
2004, at the University of Cyprus. The course is compulsory for the students of the 
education department, and can be elected by the students of mathematics department 
students. The questionnaire was completed by 154 second year students of the 
education department and 10 four year students of the department of mathematics. 
Students were asked to complete a written questionnaire that included tasks of 
recognition of functions among other forms, given in various types of representation 
(verbal expressions, graphs and mapping diagrams or algebraic expressions). A 
variety of functions were used: linear, quadratic, discontinuous, piecewise and 
constant functions. Furthermore, students were asked to provide a definition of what 
function is and two verbal examples of functions application in real life situations. 
Below we give a brief description of the questions: 
Question 1:  Recognition of functions between four given verbal expressions (Q1a, 

Q1b, Q1c, Q1d). 
Question 2:   Construction of the characteristic function of a set (Q2). 
Question 3:  Construction of the algebraic expression of a function given in verbal 

expression (Q3). 
Question 4:  Recognition of functions between six given graphs (Q4a, Q4b, Q4c, 

Q4d, Q4e, Q4d). 
Question 5:   Construction of a graph from an algebraic expression of one of the 

functions of the previous question (Q5). 
Question 6:  Recognition of functions between five given graphs (Q6a, Q6b, Q6c, 

Q6d, Q6e). 
Question 7:  Construction of a graph of a function with domain distinct points (Q7). 
Question 8:   Recognition of functions between four given diagram mappings (Q8a, 

Q8b, Q8c, Q8d). 
Question 9:  Definition of function (Q9). 
Question 10: Examples of functions from their application in real life situations 

(Q10).
Correct and wrong answers were accounted for all the questions. Answers to 
questions 9 and 10 were given additional codes as it is further described.  
The definitions given by the students were additionally coded as follows:
D1: An approximately correct definition. In this group the following type of answers 
were included: (i) accurate definition, (ii) correct reference to the relation between 
variables but without the definition of the domain and range, (iii) definition of a 
special kind of function (e.g. real function, function one-to-one or on to, continuous 
function).
D2: Reference to an ambiguous relation. Answers that made reference to a relation 
between variables or elements of sets, or a verbal or symbolic example were included 
in this group. 
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D3: Other answers. This type of answers made reference to sets but without relation, 
or reference to relation without sets or elements of sets. 
D4: No answer
As for the examples, they were coded as follows: 
X1a: Example of a function with the use of discrete elements of sets.
X1b: Example of a continuous function from physics 
X2: Example of a one-to-one function.
X3: Example presenting an ambiguous relation between elements of sets. 
X4: Example of an equation (verbal or symbolic). 
X5: Example presenting an uncertain transformation of the real world. 
X6: No example.
For the analysis and processing of the data, Gras’ s implicative statistical analysis 
was conducted by using the computer software CHIC (Bodin, Coutourier, & Gras, 
2000). A similarity diagram, which allows for the arrangement of tasks into groups 
according to their homogeneity, was produced. The notion of ‘supplementary 
variables’ was also employed in the particular analysis. Supplementary variables 
enable us to explain the reason for which particular groups of variables have been 
created and indicate which objects are “responsible” for their formation. In our study, 
secondary school direction and field of study (i.e. education or mathematics) were set 
as ‘supplementary variables’. Consequently, we were able to know which school 
direction or study field contributed the most to the formation of each group. 
RESULTS
The results are presented into three sections. In the first section we present some 
indicative answers given in the last two questions and in the second section we 
present the percentages of success. In the third section we present the results of the 
implicative analysis using software CHIC. 
(i) Some indicative answers
We restrict the qualitative analysis to the answers given in the last two questions, 
since they are of most interest. 
In the question requiring the definition of function the answers that gave an 
approximately correct definition were grouped together. “Function is a relation 
between two variables so that one value of x (or the independent variable) corresponds to 
one value of y (or the dependent variable)” were accounted in this group. Answers like 
“Function is an equation with two depended variables”, “Function is a relation in which an 
element x is linked with another element y” or even “Function is a mathematical relation 
connecting two quantities” were coded as D2. As D3 we have coded answers, which 
made reference to sets, but did not mention relation, or involved relation and not sets 
or elements of sets, that is answers like “Function is relation” or “Function is a 
mathematical concept that is influenced by two variables” or “Function is the identification 
of parts of a set”.
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The correct examples of a function were of two kinds (X1a and X1b). Examples of 
the first kind were “Each person corresponds to the size of his shoes”, “Each student 
corresponds to his/her mark at the test” made use of sets with discrete elements. The 
second type of examples presented a continuous function mainly from physics such 
as “The height of trees is a function of time”, “Atmospheric pressure is a function of 
altitude”. The examples presenting a function one-to-one were coded separately as 
X2. Such answers were “Every citizen has his own identity number”, “Every graduate has 
his own different degree”, “Every country corresponds to its own unique name”. As X3 we 
coded the examples presenting a relation between elements or variables but without 
clarification of the uniqueness in function.  Such answers were “There is a relation 
between students and their books”, “The prices of vegetables depends on the production”,
“We correspond the marks of girls in a classroom to those of boys”. Examples presenting 
an equation instead of a function were coded as X4. “There are 2x boys and 3y girls in a 
classroom and all the children are 60. If the boys are 15 we can calculate the number of 
girls”,  “Kostas has x number of toffees and John has double that number. How many toffees 
do the two friends have?”. The last category X5 included answers, which were 
ambiguous and in addition they did not define any variables or sets, and referred to 
general transformations of real world. Such answers were “Health depends on 
smoking”, “Success in a test depends on the hours of studying”, “In the relation of children 
and parents, the children are the depended variable and parents the independent variable”.

(ii) Percentages
For the purposes of the present study we will only refer to the results, which show the 
strongest trends among the students. Question 1, requiring the recognition of verbal 
examples of function, was answered successfully by around 50% of the students, and 
this percentage was almost uniform for all the four parts of the same question. On the 
contrary, in Question 4 concerning the recognition of function given in an algebraic 
expression, the percentages varied between the different parts of the same question. 
The linear function 2x+y=0 was recognised by 73% while 65% of the students 
answered that the equation of a circle x2+y2=25 presents a function. In Question 6, 
which concerned the recognition of a function when given in a Cartesian graph, the 
most difficult part was the line y=4/3 which was recognised as a function only by the 
27% of the students, since it was treated in identical way with the line x=-3/2. In the 
same question, the discontinuous linear function of Q6e was recognised only by 31% 
of the students. It can be asserted that the majority of students appear to identify the 
stereotypical forms familiar to them from high school as functions. 
(iii) Gras’ s Implicative Analysis 
From the similarity diagram shown in Figure 1, it ensues that there is a connection 
between four small groups Gr1, Gr2, Gr3, Gr4 that comprise the bigger cluster A. 
From these subgroups, the “strongest” is Gr2 formed around variables D1 and X2 
that present the premier similarity (0,99999). That means that students who give an 
approximately correct definition (D1) in Question 9, give an example of a function 
one-to-one (X2) in Question 10. Around this strong subgroup the answers to 
questions Q6d and Q6e are linked. These are the questions asking the recognition of 
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some non-conventional cases of functions presented graphs (Q6d was a graph not 
representing a function and Q6e presented the graph of a discontinuous linear 
function). Finally this subgroup is completed with the answers in Question 2 (Q2), 
which concerns the translation from a verbal representation of a piecewise function to 
the algebraic form 

       Cluster A         Supplementary groups 
Gr1 Gr2 Gr3 Gr4 Sup.1 Sup.2 Sup.3 

Figure 1: Similarity diagram of the observed variables 
Note: Similarities presented with bold lines are important at significant level 99%. 

Around the strong group (Gr2) three other subgroups are organised (Gr1, Gr3 and 
Gr4), which concern the answers to the four parts of Question 8 (Q8a, Q8b, Q8c, 
Q8d) that is the recognition of functions presented in the form of mapping diagrams. 
The high similarity of this group (0,997) indicates that mapping diagrams are 
confronted in the same isolated way. The two groups Gr2 and Gr3 compose a new 
strong subgroup with degree of similarity 0,899. The subgroup Gr4 is further 
connected with the strong connection of subgroups Gr2 and Gr3, which include the 
answers to the other parts of Question 6 (recognition of function given in algebraic 
form). Conclusively the connection of subgroups Gr2-Gr3-Gr4 creates a group of 
answers, which show a conceptual approach to function. In other words the behaviour 
of the students to the definition and to the provision of an example of function has a 
predictive character in terms of their behaviour to functions when they are 
represented as graphs and diagrams. 
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Group Gr2-Gr3-Gr4 connects with Gr1 that includes the answers to Question 1, that 
is the recognition of functions when they are presented in verbal form. Finally this 
whole group (Gr1-Gr2-Gr3-Gr4) connects with the most “extraordinary” examples of 
Question 4 (Q4e and Q4f) that refer to recognition of functions in algebraic form. 
These are connected with the group that gave a correct example with the use of 
discrete elements of sets. This is the first “supplement” of group A. 
The second supplement of strong connections is embodied by definition D2 and D3 
and examples X3 and X4 that illustrate a vagueness or limited idea of the definition 
and the examples of function. These variables connect with answers to questions Q4c 
and Q4d, which are treated in that way that shows the wrong belief that in an 
algebraic form of a function symbols x and y must always appear. The third 
supplement is the group with the most doubtful idea about the notion of function 
since it includes D4 and X6 (i.e. those students that did not attempt any definition or 
example of function). Furthermore, this group is justified from high school direction, 
i.e. the students who have followed direction of classical studies. The third 
supplement behaves as an autonomous subgroup and consists of the answers that 
show absence of definition or example with a group of different questions that all 
have directly or indirectly a linear-algebraic character (Q4a, Q4b, Q3a, Q5a, Q7a). 
Also variable X1b (examples of function with the use of discrete elements of sets) is 
also connected with this group. The students that give answers that belong to the last 
group appear to have the misconception that function is just a linear relation. 
Conclusively the strongest similarities in the diagram are (a) among responses 
providing correct definition and examples of functions and are mainly attributed to 
the students of mathematics department and (b) among responses giving no or very 
ambiguous answers and are attributed to the students of the education department, 
who come from the classical high school direction. 
CONCLUSIONS
The study has revealed three strong trends in the ideas of students for function. The 
first is the identification of “function” by a large percentage of students with the more 
specific concept of “function one-to-one”. The idea of uniqueness is particularly 
condensed and leads to identification of function as one-to-one function. Although 
this idea works for a wide range of situations and problems involving functions, it 
becomes a strong obstacle for the understanding of function as a wider concept. The 
second trend is the idea that “function” is an analytic relation between two variables 
(as it worked historically, initially with Bernoulli’s definition, and more clearly with 
Euler’s) and it is apparent in the way students define function and the examples they 
give. The third trend is that “function” is connected with a kind of diagram, either a 
Cartesian graph or a mapping diagram. On the contrary, when dealing with algebraic 
expressions the clear understanding of the definition of function is not essential; 
students respond to this latter form through certain stereotypical behaviours. 



www.manaraa.com

2–358  PME28 – 2004

In respect with the two research questions, students’ ideas are organised around two 
poles. The first is that of the conceptual understanding of function, which strongly 
connects with representations in the form of mapping diagrams and Cartesian graphs, 
and therefore has a higher level of success when dealing with most of the 
representations of functions. The other is the one dealing with function as a 
completely ambiguous relation, which connects with stereotypic forms of function 
that can be easily identified. Further research is essential in order to examine whether 
the formation of the above two poles may be modified through appropriate 
instruction.
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PRACTICAL CONSTRAINTS UPON TEACHER DEVELOPMENT IN 
PAKISTANI SCHOOLS 

Dr. Razia Fakir Mohammad
Abstract
In this paper I discuss the impact that both conceptual and contextual problems have in inhibiting 
teachers’ disposition towards capacity for development. These problems were highlighted from 
teachers’ participation with a teacher educator in a collaborative culture of learning and within their 
schools’ culture. They were challenged, supported and committed to teaching for achievement of their 
new aims deriving from an in-service course at a university in Pakistan. The teachers’ capacity to 
learn was increased during the period of research; however, they needed support in dealing with 
issues for further enhancement of their teaching. The analysis of the teachers’ transition from their 
routine teaching to new teaching revealed the teachers’ needs as well as a gap between theory and 
practices in teacher education. I conclude the paper by suggesting to the community of teacher 
educators (including myself as a member of this community), that we should revisit our perspectives of 
teacher development at the university in the light of practical reality in a school context.
Introduction
This study contributes to an understanding of, and hence to improvement of teacher 
education on which the education of children in Pakistani schools subsequently 
depends. The guiding principles behind this research were that reflection and 
justification of self-actions would enable participants to understand the reality and 
difficulties of practice and their own contribution to achieve improvement in practice in 
a collaborative partnership (Wagner, 1997; Jaworski, 2000). The research was premised 
on the idea of shared ownership in order to support and examine teacher 
implementation of new ways of teaching resulting from their learning in a teacher 
education course. The findings suggest that during the limited period of this research, 
the participants were able to go through only the initial stages of the learning process. 
Nevertheless, I as a researcher came to realise that the teachers had started to adapt 
teaching strategies, and discuss issues in their teaching such as their misunderstanding 
of students’ responses and their own understanding of mathematical concepts. By 
working very closely with the teachers, I was also able to understand some of the issues 
of implementation of teachers’ new learning resulting from their university study.  
Context of the Research 
Three teachers, Naeem, Neha and Sahib participated in the research. They had resumed 
their teaching after attending an 8-week in-service course for teachers of mathematics at 
a university in Pakistan. The new way of teaching mathematics discussed in this course 
was based on a social constructivist perspective of learning, on the idea that learners are 
active creators of their knowledge and not passive recipients that a teacher can fill with 
knowledge. A teacher’s primary responsibility is to assist in the learners’ cognitive 
restructuring and conceptual reorganisation through providing opportunities for social 
interaction in mathematical tasks that encourages the discussion and negotiation of 
ideas (see Cobb, et al., 1991; Jaworski, 1994). My study was designed to follow up 
some of the teachers after the course and to support the teachers in developing their 
teaching according to their new aims.  
All three teachers aimed to increase students’ participation in their own learning and 
develop students’ conceptual understanding of mathematics (adapted from their 
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learning at the university). This became evident when they accepted my invitation to 
participate in my research and expressed the following individual aims: 

�� Sahib’s aim was to talk about the classroom issues and plan lessons 
according to new methods.

�� Neha’s aim was to plan and teach lessons according to the ways that she had 
learned in the university course.  

�� Naeem’s aim was to discuss how to teach mathematics with reasoning.
Methodology
The nature of my research was reflective and participatory. I adopted interpretive 
research methods, collecting data by audio-recorded conversations in pre- and post- 
observation meetings; maintaining field notes during the teachers’ participation in 
teaching or in their learning with the teacher educator along with the teachers’ written 
comments (when provided) and my own reflective journal entries. The data were 
collected and analysed in the teachers’ native language of Urdu. In my analysis, I 
studied each teacher across lessons and identified a range of issues in the teachers’ 
learning. I checked that issues emerging across the three cases were indeed 
representative of the data as a whole. By listing all the examples that uncovered 
particular issues for each teacher, I was able to identify those that were common to the 
three teachers or distinct from each other.
Findings and Discussion
In this section I address issues germane to the thinking and practice of all three teachers 
that resulted from my cross-case analysis. However, due to the space limitation I 
discuss the examples from one teacher’s practice according to new aim of teaching.  
Teachers’ Understanding of Students’ Answers  
The first part of my analysis uncovered teachers’ difficulties both in addressing 
students’ thinking processes and in helping students get the right answers through their 
own mathematical reasoning. The teachers’ stated focus was to increase the students’ 
participation in their learning but their practice did not provide evidence of their 
attempting to view students’ solutions from the students’ perspectives. Nor did the 
teachers deal with what seemed like errors and confusion in students’ current 
understanding. The teachers did not seem to notice that students had developed 
different interpretations of what the teachers had been asking or presenting in the class. 
Nor did they clarify what was inappropriate in students’ explanations and why. I 
observed that the children were left alone with their confusions and were without any 
clear justification for the correctness or incorrectness of their answers.  
Below, I present part of the conversation between the teacher (Sahib) and student, in 
which I observed only a routine way of dealing with the students’ answers.  

1 T:  Somebody has thought of a number, multiplied it by three, subtracted one and got five. 
 Tell me the number he has thought of.  
 The teacher also wrote on the board,

x*3 – 1 = 5 
2 S:  Two 
3 T:  How did you find it?  
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 The teacher called that student to the board and asked him to write his method. 
 The student wrote on the board:

2*3 =6 –1 = 5 [the student multiplied 2 by 3 first, getting 6, and then subtracted 1 to get 5]
 [The way it appears in writing is mathematically wrong (since 2 * 3 is not equal to 6-1); 
 however, the student seemed clear in thinking while writing. He first multiplied and 
 wrote the answer and then subtracted 1 from the product and got the result]. 
4 T:  How did you get 2? 
5 T:  Good. [The teacher used this word often, I assumed that this was his expression to 
 encourage students’ participation] How did you find this? 
 The student was silent. The teacher then asked other students to explain in words what 
their  friend wrote on the board. There was no response. The teacher then told the student. 
6 T:  First, you added one to five and you got six on the other side. Then you divided six by 
 three to get two. 

In the above example, the teacher explained the student’s symbolic representation in a 
very different way to that used by the student (see line 6 in the data). The teacher’s 
imposition of his own procedure and his rephrasing of the students’ answers (after 
inviting the students to bring their own ideas) first encouraged and then discouraged 
participation. This led to confusion and sustained dependency on the teacher. This was 
evident in students’ subsequent silence in the classroom in response to the way the 
teacher dealt with their explanations. The teacher’s interpretation affected the student’s 
level of confidence, because after that example none of the students offered their 
thinking process, either verbally or in writing. For example, Sahib then gave another 
equation, x * 4 – 3 = 5, and asked for the answer. One of the students said it was 2, but 
none of them then expressed a method to get the answer (either symbolically on the 
board, or verbally). In my analysis, the first student had his own way of thinking but the 
teacher ignored the student’s way of thinking and did not confirm the student’s method 
(see lines 2 to 4). 
During our discussion, I asked the teacher about his different way of expressing what 
the student had written. The teacher reasoned that he wanted to teach a proper method. 
He also talked about the students’ poor background of mathematics as a barrier in 
increasing their participation. In the teacher’s opinion, it was very time-consuming to 
involve students and expect them to explain their thinking. He said that if he had taught 
the same lesson traditionally, he would have finished the entire exercise in the textbook. 
Teachers’ Mathematical Content Knowledge 
The teachers’ aim to teach mathematics with reasoning challenged their own 
understanding of mathematics. The problem of the teachers’ limited conceptual 
understanding, their reliance on prescribed methods and particular answers, became 
evident when they came to express their mathematical point of view while planning, 
teaching and analysing lessons from beyond the textbook. All three teachers were, at 
times, unable to review, clarify and rationalize the mathematical assumptions behind 
the textbook exercises. The following example of Sahib’s teaching ‘division in algebra’ 
illustrates the gap of teacher content knowledge.  
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Sahib began the lesson by testing the students’ knowledge of basic algebra; for 
example, definitions of variable, constant etc and then he drew the following table and 
explained the rule of ‘powers of two’.

24 2 x 2 x 2 x 2 16 
23 2 x 2x 2 8 
22 2 x 2 4 
21 2 x 1 2 
20  1 
2-1

2
1

2-2

4
1

After that explanation, the teacher wrote the question 
x
xy . He solved the question in this 

way: x1-1y = y. However, he did not provide any linkages between his explanation of 
the rule involving powers of two and his solution to the question. Then he gave another 
question and invited the students to solve this on the blackboard. The whole class sat 
listening to the teacher; none of them raised their hands. The teacher’s intention seemed 
to be helped the students to generalise the rule of exponents from that example of 
‘powers of two’, and to apply the rule in the presented task. However, he did not 
provide adequate explanations to support the students’ ability to understand such 
questions. I observed silence in the class. The teacher himself did not seem to 
understand the barrier of his own limited knowledge impeding achievement of his aims 
of helping the students to understand the questions. 
Imposed Identity 
The shift in the teachers’ goals following their learning at the university demanded that 
they use their intellectual capabilities in planning, teaching and evaluating their lessons, 
contrary to routine practice. However, the teachers appeared to be highly routine-
bound. The new aim in their teaching was to enable the students to be independent 
through allowing them to solve problems in their own ways. In practice, however, the 
teachers dominated the discussion, thus limiting the students’ participation. For 
example, in the lessons (discussed above) Sahib discouraged student participation in 
spite of his expectation that he would increase their participation. Although, the 
teacher’s intention (of child-centred learning) was mentioned as an objective in his oral 
planning, in his practice he did not move from very traditional interaction. In fact, all 
three teachers interrupted and directed the students’ thinking through their continuous 
comments and questions. It was difficult for them to reduce their own domination of the 
lessons, to stop telling the students what to do or to provide the students with the space 
to organize their thinking. The teachers’ behaviour did not allow the students to step 
back from dependent modes of behaviour, despite the teachers’ aims and explicit 
intentions to do so.  
Their habit of working in a teacher–dominated culture seemed to create mental barriers 
to self-analysis for all three teachers. The teachers’ analyses of a lesson focused mainly 
on what the student said, what the teacher wanted and what the wider social problems 
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were in relation to the achievements or failures of their new aims of teaching. They 
appeared unable to critique their own mathematics and mathematics teaching. For 
example, Sahib talked about students’ dependency and lack of interest but he did not to 
realise that it was possibly his own authoritarian stance that maintained the students’ 
dependency. My view is that the teachers were unaware of the complexity of practice in 
relation to their new aims. These teachers claimed to be willing to change their practice 
but were unable to cope with the challenges. Perhaps the teachers lacked understanding 
of the concept of improvement itself or did not realise the difficulty of introducing 
changes in their classroom without perceiving and challenging the complexity of their 
habitual constraints.  
Time Consuming Approach 
The teachers faced difficulties in achieving their new aims of teaching within available 
school and lesson time. Their new practice demanded quality time to comprehend and 
rationalize new aims and new practices; however, that time was out of the teachers’ 
reach. The time these teachers contributed to the research partnership was their non-
teaching time at school in which they had to fulfil regular requirements such as 
marking. They had replaced this routine work with discussion in relation to achieving 
new aims of teaching. However, the cost of such replacement was their own time at 
home. Despite their devotion, the time was still not sufficient for the teachers to satisfy 
the expectations of their new role. This resulted in additional pressure on the teacher to 
continue the lesson on the following day. For example, Sahib commented on his effort 
to increase students’ participation: 

I cannot teach according to the new way; if I give them thinking time I would not be able to 
concentrate on written work. Tomorrow I have to continue this exercise, I cannot move to 
another before this. Working Conditions 

This section focuses upon the working conditions within which the teachers participated 
in their development of teaching at the schools. The teachers were under pressure of 
their annual appraisals, their completion of the textbook and students’ examinations. 
These limitations affected the teachers’ practice and confidence in tackling their new 
aims of teaching. The teachers’ prior experience of their appraisal had minimized their 
capacities to improve teaching. For example, Sahib’s reasons for ignoring the student’s 
answer and imposing his rule (as discussed above) were his negative recall of prior 
experiences of evaluations by an inspector.

I have to consider an observer’s [inspector] thinking during my teaching; an observer could 
evaluate a teacher negatively when the students give answers that the teacher is supposed to 
tell them. I have mentioned this issue in my reflective journal also. If you [the teacher] ask a 
question and a child gives an answer then an observer thinks that the teacher has told him it 
before hand.

Elaborating his comments, Sahib said that in his prior experience an inspector of the 
school had misjudged his aims of the lesson when a student had provided an 
explanation, which was supposed to be given by the teacher as an introduction to that 
topic. The inspector evaluated the teacher as previously having taught that lesson. The 
inspector did not understand the capabilities of the child in thinking or appreciate the 
value of the teachers’ questioning in the lesson. Sahib said that the presence of the 
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teacher educator in the class reminded him of the inspector’s perspective, and, in 
consequence, limited his dealing with students’ answers. Sahib expressed his concern 
also in his reflective journal while discussing the issue of students’ equal participation 
in a lesson. He wrote: 

If the students do not give an answer then the school [inspector] thinks  that they 
 have not learned anything. If they give unexpected answers  then the  impression 
is that the teacher had taught the same concept  before. The blame is  always on a teacher.  

All three teachers had pressure to complete and revise the textbook, so the students 
could memorize sufficiently and practice to pass their examinations. For example Sahib 
stated:

I have to complete the syllabus before the final examination. … We check their memory and 
skills of drawing [geometrical shapes] in examination; conceptual clarification is not a basic 
requirement of the examination. If we ‘check’ [assess] their concepts, none of them will pass 
the examination. 

The teachers also discussed the tensions and frustrations resulting from their low 
financial and social status in society. Their financial stress required the teachers to do 
more jobs besides teaching. These teachers asked questions about betterment of their 
financial status, workload and family responsibilities. Implications and 
Recommendations
The above discussion has shown that the teachers’ conceptual and contextual 
constraints restricted them in conceptualising the underlying assumptions of the 
philosophy of the teacher education course in the practicality of their new roles in 
teaching. They experienced difficulties making improvement within existing conceptual 
and contextual constraints although they wanted to adapt their practice according to 
new aims of teaching. The teachers were aware of some limitations but did not know 
how to deal with them.
My view is that by encouraging students to participate actively (contrary to a traditional 
mode of teaching) teachers effectively open up a possibility of learning with 
understanding. However, teachers’ lack in making sense of students’ responses and 
actually dealing with them may encourage teachers to sustain their prior identity 
wherein they give preference to their own knowledge and impose their own decisions. 
Thus, this pattern could sustain a cultural norm of ‘underestimating students’ strength’; 
that is, placing blame on elders is not acceptable in parts of Pakistani society where it is 
assumed that children have low potential for thinking, and wisdom occurs through age 
and experience. My own development as a learner and teacher also testifies strongly to 
this analysis. Further, teachers’ attempts at achieving child-centred learning within the 
limitations of their own understanding of new practice may itself cause intellectual, 
emotional and affective hindrance of students’ growth. If a teacher does not understand 
or deal with students’ answers, what is the motivation for students to supply their own 
answers? In addition teachers cannot develop professionally with their limited content 
knowledge. Teachers need to enhance their mathematical understanding in order to 
understand what constitutes teaching of mathematics with reasoning (Ma, 1999). 
Limitations of mathematics content knowledge can be a big threat for teachers’ 
confidence and desire for developing teaching.
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In Pakistani schools, mistakes are generally not accepted because there is a focus on the 
product, on ‘the what’ instead of on the process and ‘the why’. For example, in one case 
when a parent asked for clarification of the teacher’s explanation (that was different 
from the textbook explanation), the teacher was threatened. The teacher reverted to the 
textbook and blamed the student’s carelessness in listening to the teacher, because she 
wanted to avoid further complications and misjudgments. The teacher did not want to 
be dishonest but more important concerns were her job evaluation and her position at 
the school. Confessing a lack in knowledge is generally considered as a matter of shame 
and threat. This is highly embedded in the cultural norms. If teachers make efforts to 
improve their teaching, they may run a risk that their efficiency will be viewed 
negatively because it exposes their lack of knowledge and this will be seen as having a 
negative effect on students’ learning outcomes.
The analysis suggests that in order to implement new methods of teaching teachers need 
time to plan lessons, and to consolidate planning so as to act accordingly in the class as 
well as to reflect on the outcomes of teaching,. However, time is a constraint in the 
school. Teachers could correct work and transmit knowledge from one class to another 
class, in the time available to them, but planning, teaching and learning according to 
new aims require more time. This leads us (a community of teacher educators) to think 
about ways to alter the ‘time consuming approach’ to a ‘time reaching approach’ in 
order to increase possibilities for child-centred learning in the real context of a school.
Moreover, due to an unsupportive school culture, routine teaching could be considered 
a secure, convenient and compensated option for teachers, because it protects their time, 
stress, position and promotion in the school, although it does not enhance their 
understanding of their professional development or contribute to students’ 
understanding of concepts. From my analysis, questions emerge for the community of 
teacher educators: Can teachers achieve any improvement, if the culture works against 
the teachers’ improvement? How can Pakistani teachers maximize their learning 
capacities if their self-esteem is low? What can the nature of teacher education be in 
these circumstances and within these limitations? How can we, as teacher educators, 
liberate teachers from the imposed constraints of schools in their contemplation of 
change?
Thus, due to the practical constraints teachers may put a layer of ‘new practice’ on top 
of their traditional practice in response to what they learn from in-service education but 
without any integration between these layers. This may prohibit them from 
acknowledging their inner resistance. This conflict might result in a tension of living 
between two practices, thereby extending the gap between theory and practice instead 
of closing it.
The following might assist in supporting teacher development:  

�� Teachers need help in enabling students to understand mathematics with 
reasoning if they want to promote their teaching practice. In addition teacher 
educators need to find ways of enabling teachers to conceptualise their work with 
pupils in the classroom, i.e., how to get right answers with an incorporation of 
students’ mathematical reasoning and teachers’ own standards.
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�� Teachers need to enhance their mathematical understanding in order to 
understand what constitutes teaching of mathematics with reasoning. Teacher 
educators need to have great sensitivity to, and understanding of, the 
consequences of the teachers’ limited knowledge of students’ learning as well as 
implementing the learning from a course. They need to relate the content 
knowledge the teachers have to teach to their students together with appropriate 
methods.

�� Teacher educators need to address the problem of the length of teaching time 
required for a lesson and length of non-teaching time at the school as well as how 
to adjust new teaching in the available time in relation to introducing innovative 
ideas from the university.

�� Teacher educators need to discuss ways to establish a learning environment in the 
school where teachers focus on students’ learning and understanding together 
with fulfilling textbook requirements with limited resources and within the 
school expectations.

Change is utterly dependent on the needs of teachers, its compatibility with the reality 
of the school context and the provision of support. Preparing teachers for change 
without addressing their needs and providing ongoing support at their school would not 
allow teachers to acquire a breadth of improvement within their new practice. If 
teachers’ needs and the requirements of a support system are ignored the tensions 
between theory and practice will continue. I conclude the paper with a comment from 
one of the teachers: 

If I move back to my previous style [of teaching] then there will have been some reasons and 
pressure. It will not only be my fault. We need to work as a group if we want improvement.  

This statement suggests many questions from a teacher to a teacher educator; from a 
school to a university or from practice of routines to a theory of change.  
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This paper points up, in the case of a particular class discussion, the crucial role that 
the Trace tool could play as potential semiotic mediator for the notion of function. In 
particular, the episode we are presenting here want to show how the idea of 
trajectory developed through a specific sequence of activities, carried out in Cabri 
and centered on the use of this tool can substantially contribute to building the 
meaning of function as a point by point correspondence. It also shows the conceptual 
difficulties attached to a complete construction of this meaning and how the role of 
the teacher is based on and complements the pragmatic experience of the students in 
Cabri.

INTRODUCTION
Similarly to what happened for other basic mathematical notions, a formal definition 
of function, as correspondence between two sets, dates back to the beginning of the 
nineteenth century. Actually, within set theory, the definition of function as a 
particular triplet (E, F, A) in which A is a subset of EXF, is due to Bourbaki and it 
has been given in 1939 (Bourbaki 1939).
As shown by Malik (1980): “a deep gap separates early notions of function, based on 
an implicit sense of motion, and the modern definition of function, that is “algebraic” 
in spirit, appeals to discrete approach and lacks a feel for variable”.
Nevertheless, it’s interesting to remark that traces of the fertile nexus of this concept 
with the sense of motion can be still identified in the work of famous mathematicians 
that contributed to the elaboration of this modern definition. In fact, in 1837 Dirichlet 
writes: “Soient a et b, deux nombres fixes et soit x, une grandeur variable, qui prend 
successivement toutes les valeurs comprises entre a et b. Si à chaque x correspond un 
y fini unique de façon que, quand x parcourt continûment l’intervalle entre a et b, 
y=(x) varie aussi progressivement, alors y est dite fonction continue de x sur cette 
intervalle. Pour celà, il n’est pas du tout obligatoire que y, sur tout l’intervalle, 
dépend de x par une seule et même loi, ni qu’elle soit représentable par une relation 
exprimée à l’aide d’opérations mathématique.1” (Youschkevitch 1976). As 
Youschkevitch underlies, the general characteristic of this definition of continuous 
function and its possibility to be directly generalized to the discontinuous one is 
evident; nevertheless a dynamical point of view is still present and Dirichlet found 

                                          
1 “Let a and b be two fixed numbers et let x be a variable quantity that takes successively all the values between a and b.
If for each given x, a unique finite y corresponds to it in the way that, when x moves continuously along the interval 
between a and b, y=(x) varies progressively too, then y is said to be the continuous function of x over this interval. For 
this, it is not obligatory at all either that y, on all over the interval, would depend on x according to the same unique law, 
or that it would be represented by a relation expressed with the help of some mathematical operations” (translated by 
the authors)  
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the necessity to add a geometrical explanation to this definition.
On the contrary, the modern definition of function refers to a static notion that has 
lost every relation with the primitive dynamic intuition tightly tied to time and 
movement.  
This research report presents a meaningful episode of a larger teaching and learning 
project, the first part of which has already been presented in PME27 (Mariotti et al. 
2003). There were four classes involved in the project, two in France and two in 
Italy; the students were 15-16 year old with a major in scientific studies. In the 
previous research report (Mariotti et al. 2003) we have shown a particular aspect of 
the role of semiotic mediator played by some Cabri tools, in constructing a net of 
interrelated and indispensable meanings for the notion of function. In particular, both 
the asymmetrical nature of the independent versus the dependent variable and the 
twofold conception of trajectory (as both a "sequence of position of a moving point" 
and "a globally perceived geometrical object") were identifiable in the analysis of 
pupils’ productions. Such meanings are crucial components for grounding the notion 
of function as a co-variation (between two variables, one depending on the other, and 
between two sets, the domain and the image) and they clearly emerged in relation to 
the internalization of the Dragging and Trace tools.
Without solution of continuity to what we have already presented, the episode we are 
going to analyze here, enables to highlight an other aspect of the potentialities of the 
Trace tool as semiotic mediator. In particular, it shows the contribution of this tool in 
the emergence of the idea of function as point by point correspondence, by its simply 
evocation, in the case of a classroom discussion. This episode shows, also, how the 
achievement of this mathematical definition is difficult for the students and how the 
teacher manages to exploit such tools potentialities in order to attain this objective. 
Finally, this episode points up the role played by the problem of “defining two equal 
functions” in the construction of the meaning and of the definition of the function 
itself.

THE EXPERIMENTAL CONTEXT 
The sequence of activities, the episode presented here is part of, is based on four 
fundamental hypotheses:  
1. One crucial aspect of the notion of function is the idea of variation or more 

precisely of co-variation, that is to say a relation between two variations one 
depending on the other one.

2. The primitive metaphor of co-variation is motion, that is to say the change of 
space according to the change of time. 

3. A DGS environment, such as Cabri-géomètre, can provide a semantic domain of 
space and time within which variation can be experienced as motion. 

4. According to the Vygotskian theoretical perspective of the semiotic mediation 
(Vygotsky, 1978, Mariotti, 2002), the computational tools and objects students 
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interact with, can be thought as signs referring to this notion of function as co-
variation and, as such, they may become tools of “semiotic mediation”, 
specifically implied by the teacher in class activities. 

As a consequence of these theoretical assumptions, the general structure of the 
experimental sequence consists of four stages:  
��At the beginning, students are faced with 

tasks to be carried out with Cabri tools; 
��secondly, the various solutions are 

discussed collectively under the guidance 
of the teacher. These collective 
discussions play an essential part in the 
teaching and learning process. They are 
real “mathematical discussions” in the 
sense that their main characteristic is the 
cognitive dialectics between different 
personal senses and the general meaning 
which is introduced and promoted by the 
teacher (Bartolini Bussi 1998).

��Thirdly, it's required to the students to write at home an individual report 
specifying, on the one hand, what one has experienced and understood, and, on 
the other hand, doubts and questions arisen. This third stage is important because 
it constitutes a first externalization of internalized meanings and enables a 
reflective feedback on the solving task activity with tools.  

��In a fourth time, students are asked to discuss about their productions. This phase 
is aimed at pursuing the processes of internalization and social inter-subjective 
construction of meanings.  

THE EPISODE 

A definition of “equal functions” 
In the first part of the sequence, the activities with the Cabri-tools made the students 
perceive the difference between points that can be dragged directly, by taking them 
with the mouse, and points that can be moved only indirectly, by dragging those that 
these latter points depend on. This has become a reference situation, where a system 
of signs has been established, on the basis of which the meaning of variable has been 
introduced by the teacher. The points that can be moved directly correspond to the 
independent variables, whilst the points that can be moved only indirectly correspond 
to the dependent variables. Similarly and accordingly to our main fourth hypothesis, 
the use of the Trace tool contributed to the emergence of the twofold meaning of 
trajectory. In fact, both the conception of trajectory as a “globally perceived object” 
and as “an ordered sequence of position of a moving point” can be found in pupils’ 

CCllaassssrroooomm mmaatthh ddiissccuussssiioonn
lleedd bbyy tthhee tteeaacchheerr

DDrraaffttiinngg ooff aann
iinnddiivviidduuaall rreeppoorrtt

aatt hhoommee

PPrroobblleemm ssoollvviinngg
wwiitthh ttoooollss
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formulations and individual reports at home. (Mariotti, et al. 2003; Falcade 2003).
After the first phase of activities, a collective discussion was carried out, with the 
explicit aim of elaborating a definition of function. The discussion was articulated 
into two parts and took place during three lessons (lasting approximately 5 hours), 
with a twofold aim (it is possible to recognize a cognitive and a meta-cognitive level) 
corresponding to: 

�� clarifying and systematizing the ideas emerged during the previous activities. 
�� expressing these ideas into a ‘mathematical statement’, i. e. the definition of 

function.
At the very beginning pupils were asked to characterize a function. Different 
elements in play are highlighted by the students: the (independent and dependent) 
variables, the range domain, the image. Both the pupils and the teacher refer to Cabri 
tools and Cabri phenomena, as experienced during the first activities. 
The difficulties arising in entering the mathematical world make the role of the 
teacher become relevant; the teacher has the difficult task of mediating between 
culture and pupils, between mathematics, as a product of human activities, and pupils' 
learning. Thus when the crucial point arises and the pupils realize that characterizing 
a function implies determining when two functions can be said to be “equal”, the 
teacher shifted the focus of the discussion and asked the student to try and give a 
“definition of equal functions”. A first attempt of definition simply stated: « Two 
functions are equal if they have the same range domain and the same image ».
At this point it is impossible to say whether, when the pupils speak about range and 
image, they are thinking globally or punctually.  
The teacher asked the students to go back to Cabri and to look for different examples 
that can corroborate or invalidate their first conjectured definition. After this working 
moment in pairs, pupils were asked to express the new ideas arisen from their activity 
in Cabri. The following definitions about “two equal functions” were proposed.

Andrea – Alessandro: “Two functions are equal if they have the same range domain and the same 
image for all the domains subsets of the original domain which define the functions” 
Gioia – Federica: “Two functions are equal if they have the same number of variables, the same 
range domain, and the same procedure (in the construction of the macro)”.
Marco- Gabriele: “Two functions are equal when they have the same image and (when) the same 
range domain is fixed (for both).  
Tiziano – Sebastiano: “In our opinion two functions are equal if having the same range domain and 
the same definition procedure they have the same image. If either the domain, or the definition 
procedure, or the image are not equal, neither the functions are equal.” 
Apart from that of Gabriele & Marco, who do not take into account the procedure, all 
the other definitions do consider the main elements in play: the range domain, the 
procedure and the image. For the majority of the students, the attention is focused on 
the difference between the procedures, but, surprisingly, the definition of Andrea & 
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Alessandro presents a characterization in which the domain is thought in terms of 
subsets. It’s a static definition that shows no traces of variations and uses a quantifier 
(“for all”). This way of thinking may appear quite strange, if one does not take into 
account the very peculiar experience that pupils had in the previous activities and 
the relation built between the idea of trajectory and that of image: in the previous 
work, in order to compare two different functions pupils have compared two 
procedures on the same range domain observing that each procedure produced a 
different ‘trace – trajectory’ (image). Nevertheless, the link between what it has been 
done in Cabri and Andrea’s and Alessandro’s formulation is not immediate at all, we 
can suppose that process of internalization of this tool, which has transformed the 
Dragging in Cabri into such a static formulation (“for all the domain subsets”) has 
been quite important.  
Let see how the way of thinking was shared in the class and evolved. 
A “reliable” definition hard to be accepted
The discussion starts when pupils are asked to compare the different definitions they 
have produced. 

1. Ins: we must find an agreement on a definition, which can be one of these, or an 
improvement of one of these, or the fusion of these … We must decide. 

2. Andrea : According to me, Gabriele’s and Marco’s definition is wrong.
3. Ins: So, Andrea, according to you, Gabriele’s and Marco’s definition is wrong. Let’s 

read it again (she reads again) “two functions are equal when they have the same 
image and (when) the same range domain is fixed for both”.  

4. Andrea : Because to get to the same image, someone could pass through… we could 
have several journeys; in fact, if there were a subset of the domain… we can’t say 
that the functions are…

5. Ins :… Tiziano, could you try to explain it?  
6. Tiziano: Yesterday, we saw that we can, by doing the same domain, we can create 

the same image and this, with different functions (procedures). 

The teacher redirects the discussion on the comparison between the definition of 
Andrea and Alessandro and those referring to the procedures. 

44. I Ins: Let’s read the text. You say that if they have the same domain and the same 
image for each subset of the domain… 

45. Tiziano: But, here it’s like to have the same procedure. 
46. Ins: Hum, and why it’s like to have the same procedure?  
47. Several voices: …Because… 
48. Gabriele: …As we go further, the subsets of the domain and vice versa…  
49. Ins: Do you agree, Andrea? 
50. Gioia: The domain is the plane, then you have the straight line, then a segment…  
51. Ins: What are these?  
52. Andrea: The domain can be whatever.
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53. Gioia: They are subsets.  
54. Ins: And then, the procedure, what does it do? That is to say, I…. Where does it start 

from?
55. Andrea The domain can be one point too… if we want! 
56. Ins: The subset of the domain can be one point too. Oh!  
57. Andrea: For whatever point, we get the same point of the image.
58. Ins: And this give the idea to say that… 
59. Gioia: I’m doing the same procedure. 
60. Andrea (together with Gioia) I’m doing the same procedure  
61. Ins: I’m doing the same procedure. Therefore, for whatever point of what?  
62. Andrea: For each point of the domain we have the same… as the result of the 

function, the same point of the image.  
63. Ins: Do you agree? (referring to Tiziano)
64. Perplexed silences 
65. The teacher writes at the blackboard and reads: “For each point of the domain, we 

have as the result of the function, the same point as the image”. 
It is possible to observe the emergence of the idea of coincidence point by point, as it 
is originated by the coincidence trajectory by trajectory, passing to the limit situation 
when the subset is a point. This is the case for Andrea, in which the process of 
internalization of the Trace tool turns out to be quite substantial. The development of 
this definition is achieved by thinking aloud and other pupils seem to participate to its 
elaboration (see in particular the interventions 50 – 59, when Gioia completes the 
sentence of Andrea or answers instead of him), but we can’t be sure about them.
At the beginning, pupils seem clearly to accept that “to have the same domain and the 
same image for each subset of the domain it’s like to have the same domain and the 
same procedure (lines 45, 48, 50). This is probably due to the fact they have already 
experienced in Cabri different phenomena according to which, Andrea’s and 
Alessandro’s definition appears sensible. Their agreement with Andrea is based on 
their actions with the tools; it is not theoretical at all. 
During the second part of the dialogue, involving mainly the teacher and Andrea, but 
also Goia, the definition emerges in a quite “logical” and reliable way. Nevertheless, 
at the end, when the conclusion is written on the blackboard and read by the teacher, 
it becomes difficult, for the other students to accept it. Actually, this corresponds to 
deny the key role of the procedure in the definition of a function. It corresponds also 
to overcome the conceptual move from an experience based definition, tightly tied 
with Cabri activities, to a purely mathematical definition. And, indeed, a further 
discussion was, needed to reach the acceptance of confronting point by point a 
function. The role of the teacher is crucial in helping students to face this move. 
Indeed, her role is determinant all aver the discussion. At the beginning (line 1) she 
states the didactical contract within which the discussions should be developed. In 
different occasions (lines 44, 46, 51, 54, 58, 61), she intervenes or poses very specific 
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questions, in order to redirect the discussion and focuses on the main mathematical 
points. In particular, at line 56, she repeats, with emphasis, Andrea’s statement. She 
is aware about the important mathematical implications of Andrea’s observation and 
pushes further the discussion in this direction. In other moments (lines 5, 49, 61) she 
tries to involve into the discussion students that seems not to participate to it. In 
general, what she tries to do is to orchestrate all the interventions in order to obtain 
that certain mathematical meanings emerge from particular students and then are 
discussed (and possibly shared) by all the other ones.

CONCLUSIONS
The excerpt, we have just presented, shows, in the case of a class discussion, a 
particular way the Trace tool can function as potential semiotic mediator. In fact, the 
idea of trajectory, as it emerges from the activities carried out in Cabri and centered 
on the use of this tool, substantially contributes, at least for Andrea, to building the 
meaning of function as a point by point correspondence. The same idea leads the 
other students to conceive that “to have the same domain and the same image for 
each subset of the domain it’s like to have the same domain and the same procedure”. 
The definition of function as correspondence is not far from there but it isn’t 
immediate at all. Indeed, the procedural aspect seems to remain dominant for the 
other students and the correspondence between the two points, far from being 
arbitrary, must be related to a well stated procedure. The ultimate perplexity to accept 
Andrea’s definition of “equal functions” shows also the difficulty to shift to a 
formulation that is theoretical and completely detached from the sensible experience 
in which it has been originated 
Maybe the activities developed in the Cabri environment could have even reinforced 
a natural procedural tendency. But, on the other hand, within Cabri, the available 
tools (Dragging, Trace, Macro,…) and the particular signs (segments,  rays, Cabri 
figures representing the range domain, on which the independent variable varies, or 
the image, on which the dependent variable varies) offer a common semiotic system 
that the pupils and the teacher can elaborate. The Cabri tools and the related signs 
allow a discourse on them and on their behavior which gives a fundamental 
contribution to the construction of the net of interconnected meanings concerning the 
notion of function. 
This excerpt shows also the importance of the teacher’s role. On the one hand she has 
to organize a sequence of tasks involving tools to activate and support the process of 
internalization. On the other hand, she has to orchestrate the discussions in order to 
guide this process towards the construction, necessarily inter-subjective, of a certain 
specific mathematical meaning which may be, sometimes, quite different from the 
students’ personal meaning. For this reason, in some cases, and this is the case, she 
has even to induce certain conceptual moves in order to help student to completely 
accomplish this processes.  
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Starting from a situated cognition perspective, this paper reports on the activity of 9th grade 
students who are interpreting the shape of a graph arising from the motion of a bouncing 
ball. In an unfamiliar context, informed by previous knowledge of similar experiments, the 
obstacle of understanding why the graph does not start from the origin is overcome through 
an interplay between different signs.   

THE IDEA OF A SITUATED COGNITION
“When we deliberately and effortfully think, presumably muscles come into play. 
Primary among these are the speech muscles; for thought, as John B. Watson claimed, is 
primarily incipient speech. Thinking aloud is just uninhibited thinking. Other muscles 
enter the thought process too, as Watson appreciated, notably in the case of the artist or 
acrobat who plans his moves with incipient rehearsals of muscular involvement, or the 
engineer, who simulates in his muscles the lay of the land or the distribution of stresses in 
what he means to build. The artist, engineer, and acrobat are poor at putting their 
thoughts into words, for they were thinking with nonverbal muscles” (Quine, p.88). 

The quotation above sheds light on the important role of body in the act of thinking; 
moreover, it stresses that this is not merely a matter of thought in itself. I argue that 
such a viewpoint holds just as for an initial phase of activation of thinking, as for the 
constitutive phase of its development; since this is true for all the human activities of 
thinking, it is significant for learning in particular. We have to bear in mind all the 
“ingredients” that constitute thought such as imagination, perception, motor-sensory 
receptivity, muscular activity, and brain information processing. Besides, thought is 
also matter of culture in a wide sense: learners’ expectations, motivations, tasks, 
goals, previous knowledge, etc. Although each of those aspects is quite meaningful in 
its own right, none of them in isolation can fully tell the story of a student 
conceptualisation. Therefore it is necessary to speak not simply of students’ 
cognition, but rather of what I call cognition in context or situated cognition (for a 
study within this perspective, see Watson, 1998). Since the reference discipline is 
Mathematics Education, situated mathematical cognition will be the general subject 
matter of my research.  

SHAPING A CONSISTENT THEORETICAL FRAMEWORK 
Recent developments and ongoing studies related to the psychology of mathematics 
highlighted biological and neurological constraints, cognitive mechanisms, and 
cultural roots affecting mathematical knowledge (see e.g. Butterworth, 1999; 
Dehaene, 1997; Houdé & Tzourio-Mazoyer, 2003; Lakoff & Nùñez, 2000). At 
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present these new trends are not to be ignored because they clarify the central issue of 
the primary sources of mathematical understanding. More and more attention is being 
drawn to the role of perceptuo-motor activity (i.e., bodily actions, gestures, 
manipulation of materials or artefacts, acts of drawing, and so forth) in the learning of 
mathematics:  

“While modulated by shifts of attention, awareness, and emotional states, understanding 
and thinking are perceptuo-motor activities; furthermore, these activities are bodily 
distributed across different areas of perception and motor action based in part, on how we 
have learned and used the subject itself. […] the understanding of a mathematical 
concept rather than having a definitional essence, spans diverse perceptuo-motor 
activities which become more or less significant depending on the circumstances” 
(Nemirovsky, 2003, p.108). 

This claim meets the idea of situated cognition. Furthermore, these perceptuo-motor 
activities are consonant with the semiotic “key elements in the organization of mental 
processes as they are used to reflect and objectify ideas in the course of the 
individuals’ activities” (Radford, 2003, p.125): words, gestures, artefacts, drawings, 
and so on. As far as my research is concerned, the analysis has been focused on 
students’ gesturing and linguistic productions, as observable constitutive components 
of the mental activity, by following the belief, to use famous words, that: “gestures, 
together with language, help constitute thought” (McNeill, 1992, p.245; emphasis in 
the original). My sense is that until recent years, gestures and language have often 
been taken into account in fragmented fashion, each in its own way, forgetting the 
richness of an interplay among them or between all the semiotic resources; but lately 
strong evidence has been published for their significance in constructing meanings in 
context, even in interaction with technology (see e.g. Alibali et al., 2000; Arzarello & 
Robutti, forthcoming; Nemirovsky et al., 1998).

A search for coherence: more signs 
Among the contemporary cognitive oriented approaches, the theory of embodied 
cognition (Lakoff & Nùñez, 2000) has been for me the most fascinating one in that it 
investigates where mathematical concepts come from and examines the ways in 
which the embodied mind brings mathematics into being. Early interests were on 
studying the role of conceptual metaphors (the “fundamental cognitive mechanisms 
which project the inferential structure of a source domain onto a target domain”; 
Nùñez, 2000, p.9; emphasis in the original) in relation to mathematics learning. Later, 
metaphors came to be seen as vehicles of knowledge from the perspective of a social 
construction of meanings (Ferrara, 2003). On the other hand, we have analysed the 
mediation-role of technology in activities in which 14 years old students were asked 
to interpret on a calculator some graphs obtained from physical motion experiments 
in front of a sensor (Ferrara & Robutti, 2002). But soon, the question of a relationship 
between metaphorical thinking and the use of technology arose. Gestures and 
perceptuo-motor activities cannot be forgot nor understood without the means and 
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tools that they put in motion. Many more signs need to be looked at to have a 
framework consistent with the idea of a situated cognition.
Signs and symbols are used in the literature sometimes with different meanings, and 
sometimes as synonymous. It is then important to make explicit how we use such 
terms in this study. With signs, I refer to what Radford (2002) calls “semiotic means 
of objectification – e.g. objects, artifacts, linguistic devices and signs that are 
intentionally used by individuals in social processes of meaning production in order 
to achieve a stable form of awareness, to make apparent their intentions and to carry 
out their actions” (p.15). Gestures will be part of signs, together with particular 
words, conceptual metaphors and blends, results of perceptuo-motor activities, keys 
on the technological artefacts, mathematical and general objects (like graphs, number 
tables, bouncing balls, etc.). Instead, with symbol I mean the final widest and highest 
stage in the life of a sign: that specific kind of sign embedding a conflation of the 
signified and the sign, in the present case a fusion (see Nemirovsky et al., 1998) of 
the physical phenomenon of motion and its mathematical graphical representation.
Within this perspective, I will discuss the mathematical cognition of some students 
(9th grade) while striving to make sense of a position-time graph resulting from a 
bouncing ball. Roughly speaking, the paper arises from an attempt of hearing the 
cognitive voice of signs (gestures, speech, artefacts, metaphors and so on) in such a 
situation, trying to survey their role and interplay in making something non-palpable 
and unperceivable for students at the beginning (the shape of the motion graph) 
palpable and perceivable at the end.

THE CONTEXT 
The experiment: methodology. The data comes from a long-term teaching 
experiment carried out a couple of years ago and part of a research project still in 
progress. The core activities involved grade 9 students in approaching the concept of 
function as model of a physical movement described through graphing (Ferrara & 
Robutti, 2002; Arzarello & Robutti, forthcoming). Two teachers, one of mathematics 
and one of physics, were active in the classroom and collaborated in designing the 
experiment sequence. In each activity the students worked in small groups (three to 
four people), then participated in a class discussion led by a researcher present in the 
classroom, and aimed at sharing and comparing the different solutions. We collected 
data for the analyses in the form of students’ written notes, worksheets completed by 
the groups of students, and transcriptions from video-recordings of both, group and 
class discussions.
The activity. The activity this paper reports on is the fourth of a series. Their focus 
was on the construction of a model starting from physical motion (a second phase 
was centred on the inverse passage: from models to motions). In previous sessions, 
the students were asked to move in front of a CBR (a motion detector) to perform 
different kinds of motion: uniform (back and forth), accelerated and periodic. A red 
line on the floor marked the point where they had to stop or change direction. The 
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last session differed from these in that the students used a toy object: a bouncing ball 
that groups dropped under the motion sensor. As the ball bounces, the students 
observed the position-time graph built in real time on the screen of a symbolic-
graphic calculator (TI-92 Plus) linked to the sonar. After gathering data (stored in 
calculator memory) we provided each group with a worksheet encompassing three 
steps: first, the students explained in natural language the motion of the ball and the 
graph (e.g. “Describe the kind of motion the ball made”, “Describe how space 
changes with respect to time (increases, decreases, etc.)”). Second, they were asked 
to interpret qualitatively the shape of the graph (e.g. “Analyse the graph. Is it like a 
straight line? Is it like a curve? Does the curve increase? Does the curve decrease?”). 
Finally, they had to interpret quantitatively the graph by calculating the slope of the 
curve at different points (e.g. “Consider the ratio m = (s2 - s1)/(t2 - t1) and use it to 
describe mathematically the graph of your motion”1).
At the time of the experiment, in the first months of the school year and of high 
school, the students had not developed formalised knowledge in terms of graphs or 
functions. From an instructional view, the activities were designed to let the students 
pass gradually from an intuitive stage, starting from verbalising the experiment 
through natural language, to a more conceptual one. Because of space constraints a 
brief excerpt from the activity of one small group of students will be considered. 
Despite the briefness, it is significant for the different signs coming into play; I will 
strive to hear and understand through the analysis what their voice is saying. 

DISCUSSION
The CBR was raised around 2 m from the ground and the ball was dropped under it. 
Only the first part of the graph (Figure 1) until 6 s, during which the bounces of the 
ball can easily be noted, is of interest; after 6 s the ball drifted away from the sensor 
range. The students are discussing the questions about the shape of the graph: Is it 
like a line? Is it like a curve? Does the curve increase? Does the curve decrease?”.  

Figure 1 
Soon a problem arises for Fabio and Giulia: the graph does not start from the origin. 
The schema (Radford, forthcoming) they have in mind differs from what the 
calculator screen shows. The previous artefact-mediated experiments, in particular 
the periodic motion (see the pronoun “we”, #127), condition the students’ 
expectations for the graph2. The schema needs to be re-thought of. But: how?

122. Giulia: Why doesn’t it start from the origin?

2 m
6 s
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123. Fabio: When it arrives to this point here [he is placing the cursor on an 
inferior extremity of the graph] it is when the ball…

124. Giulia: Why doesn’t it arrive on the horizontal axis?
125. Fabio: Here [he is again placing the cursor on an inferior extremity of the 

graph] it is as the ball, when it is near the CBR 
126. Filippo: Yeah
127. Giulia: Hum, because we…
128. Fabio: Here it is when it [the ball] is near the CBR
129. Giulia: No
130. Fabio: Instead here [he is moving the cursor on a superior extremity] it is 

when… 
131. Giulia: Here [she is pointing to one of the superior extremity] it is when it

[the ball] is on the ground
132. Fabio: Here, when it is on the ground, just this point [he is placing the cursor 

on the same superior extremity] 
133. Giulia: Yeah
134. Fabio: When it is on the ground [he is moving the cursor on the next inferior 

extremity]
135. Giulia: Whereas there, it is when it is near the CBR… 
136. Fabio: And when it is near, when it approaches the CBR, the maximum point 

in which it approaches the CBR is here [he is pointing to the inferior 
extremity of the graph where the cursor is located] 

Not only the graph does not start from the origin but, in addition, it does not arrive on 
the horizontal axis (the physical ground, the floor, does not correspond to the 
‘mathematical ground’!). This requires a reflection both on the spatial origin of 
motion and on the position of the sonar (raised vertically, with the ball falling along a 
vertical trajectory). The point of view needs to be shifted to accommodate the ball as 
subject of motion. The passage happens with the help of a specific sign: the Trace
key activated on the calculator displays a moving cursor on the graph, with the 
numerical coordinates corresponding to the point the cursor is at. Such a sign prompts 
a first exploration of the graph, rich of deictic and locative words (Radford, 
forthcoming): “here”, “there”, “this point”; “near the CBR”, “on the ground”. Usually 
these words are matched with physical body gestures; indeed, in the present case the 
cursor acquires the mediation function of an index, in place of usual deictic/indexical
gestures (#123, 125, 130, 132, 134). Technology is working with the students, not for
them: the instrument provides them with an inherent function (the tracing function) 
used through a physical tool (the cursor) to make accessible the motion experiment in 
the graph. The students already think of the graph in terms of motion (the pronoun 
“it” is used to speak of the curve ‘starting’, ‘arriving’, etc.); however, their 
interpretation remains at a local level, in terms of different spatial positions of the 
ball during its movement (this is an operational way to see the graph), as pointed out 
by the timed sentences (observe the pervasive presence of the temporal adverb 
“when”). The beginning of a more global conceptualisation of the graph is marked by 
their discovery that the maximum positions reached by the ball in motion correspond 
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to the inferior extremities on the graph. A step more is made in #136, where a gesture 
substitutes the cursor.

137. Giulia: Well, a curved line represents the graph…
138. Fabio: A curved line
139. Giulia: A curve that doesn’t start from the origin 
140. Fabio: Wait, say, let’s see, hum… 
141. Giulia: It is a curved line that has always the same… maximum point
142. Fabio: That… when… 
143. Giulia: …but that varies as minimum point 
144. Fabio: When the curve goes up, when it goes up [he is sketching a parabolic 

slope in the air with his right hand: his index finger, pointing to 
imaginary physical locations in front of his body, follows this going 
up trajectory, from the bottom-left to the top-right], it indicates that 
the ball goes down towards the ground [he is lowering his hand in a 
vertical direction, miming the ball motion while falling], [he fast 
raises his hand] when it [the curve] goes down [he is lowering his 
raised hand, reproducing with the index finger the previous slope but 
in the opposite versus], the ball [he is raising his hand again in a 
vertical direction, miming the ball motion while bouncing up]…

145. Giulia: It indicates that the ball goes up 
A second interpretation of the shape of the graph in terms of maximum and minimum 
points begins3. This is a natural resource for the students, so that they seem to have 
embodied the extreme spatial positions of the ball on the extremities of the graph 
(#141, 143). The students are now at a global level, in which the graph is considered 
in a structural way. Let us focus on the last two lines: Fabio shows of knowing and 
acting at once (#144): he knows the graph in terms of the motion of the ball, and he 
acts to reproduce both the shape of the curve and the motion itself. The schema has 
definitely been re-thought of: Fabio is able to enact the whole experiment and to 
recognize it in the graph, and Giulia shares this knowledge (#145). Graph and motion 
are not longer distinguished; in contrast they are fused together as marked by the use 
of verbs of motion, “to go up” and “to go down”, for talking about the graph (“the 
curve”, or “it” in the sentences) too. This process may be interpreted as the 
construction of a blended space (Lakoff & Nùñez, 2000), in which the features of the 
two domains of the Graph is a Moving Object metaphor (see Ferrara, 2003) are 
merged in a new unique sign: the motion-graph. On the other hand, this cognitive 
behaviour is also embedded in a convergence of Fabio’s iconic gestures (Mc Neill, 
1992), which are of two kinds. Informed by current trends in the study of gestures 
(see e.g. Alibali et al., 2000; Arzarello & Robutti, forthcoming; Edwards, 2003), I 
refer to them as follows: when Fabio’s hand traces the shape of a piece of the curve, 
the gesture is iconic-representational (Arzarello & Robutti, forthcoming), standing 
for the graphical representation; when its movement enacts the motion of the ball, it 
is iconic-physical (Edwards, 2003), since it represents the physical phenomenon. The 
graph becomes something to think with, the motion something to enact. But, there is 
more information here: the transition from the operational (local) to the structural 
(global) mode of thinking of the graph mirrors the occurrence of a process of 
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reification, which, through the birth of the Graph is a Moving Object metaphor, 
marks the beginning of the conceptualisation (for a study about the role of metaphors 
in constructing new concepts, see Sfard, 1994). As a consequence, rather than being 
simply the result of a conflation of the two existing domains of motion (the physical 
phenomenon) and graph (the abstract sign), the blend arising from the metaphor is 
what brings the abstract graph-sign into existence as a symbol. Similarly, the two 
Fabio’s gestures are so coordinated with speech and among them and iterated during 
the explanation that, recalling the distinction by Peirce (1955) between three different 
kinds of signs (index, icon and symbol), I think it is possible to speak of them as 
gestures with a symbolic characterisation. 

FINAL REMARKS 
The analysis reported in this paper points out the need of further investigations: 
reification, blends, metaphors, knowledge objectification, special kinds of gestures or 
actions seem to be due to a basic and inherent cognitive mechanism activated in 
constructing a meaning, in grasping a concept, in conceiving a sign as symbol. On the 
other hand, reasoning in abstract terms or on abstract entities (such as mathematical 
objects, e.g. a graph) is a complex activity that requires drawing attention to the deep 
network of interactions of the students with the environment they are acting upon. 
Although it is not yet clear the fundamental mechanism entering the scene (and this 
remains an open problem), support may come from our neuro-biological structure. 
Recent neuroscience studies, for example, shed light on the representational dynamic 
of the brain as non-symbolic but as a type of self-organisation, in which body action 
plays a crucial role (Gallese, 2003). Results of this kind are to be regarded with a 
special eye, because they may provide us with productive answers.
_____________________________  

1. t1 and t2 are two subsequent time data, s1 and s2 are the two corresponding position data. A table 
on the calculator provides the students with the numerical values. 

2. In previous motions, the graph starts from the origin: in fact, the student moving approximately 
begins his/her run at time t=0 where the CBR can gathers data (0.5 m). And at that time he/she 
has not yet covered any space.  

3. As a consequence of pixel definition of the screen, there is not a perfect match between the 
plane locations of the cursor on the inferior/superior extremities and the maximum/minimum 
points. But this is not a problem, because a qualitative interpretation is enough for the students.
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This paper is concerned with the role of language in mathematics learning at college 
level. Its main aim is to provide a perspective on mathematical language appropriate 
to effectively interpret students’ linguistic behaviors in mathematics and to suggest 
new teaching ideas. Examples are given to show that the explanation of students’ 
behaviors requires to take into account the role of context. Some ideas from 
functional linguistics are outlined and some features of the texts usually produced by 
students are discussed and compared to the corresponding features of standard 
mathematical texts. Some teaching implications are discussed as well. 

INTRODUCTION
The role of language in mathematics learning is a critical topic, and it is usually dealt 
with from a variety of theoretical perspectives. A controversial issue is the 
relationships between communication processes and the development of thinking. In 
the opinion of some researchers1 thinking and communication are closely linked, 
whereas others2 regard them as quite independent processes. The language of 
mathematics itself is interpreted from a variety of perspectives. In the opinion of a 
good share of mathematicians the specific features of mathematical language chiefly 
reside in mathematical formalism. On the other hand, verbal language is widely used 
in mathematical activities (including research), and language-related troubles are not 
confined to the symbolic component at all. I presume that most mathematics 
educators, no matter the theoretical frame they adopt, would agree that linguistic 
problems may undermine any further intervention, for students might misunderstand 
what they are told or they read, or be unable to express what they mean. It should be 
widely acknowledged too that this issue grows even more important if groups of 
language minority students are involved3. Moreover, if one assumes too that 
"learning mathematics may now be defined as an initiation to mathematical 
discourse, …"4, and languages are regarded not as carriers of pre-existing meanings, 
but as builders of the meanings themselves, then the linguistic means adopted in 
communicating mathematics are crucial also in the development of mathematical 
thinking. So, poor linguistic resources would produce poor development of thinking.  
The main aim of this paper is to provide a perspective on mathematical language 
appropriate to effectively interpret students’ linguistic behaviors in mathematics and 
                                          
1 For example, Sfard (2001). Also Duval (1995) underlines the cognitive functions of languages in 
mathematics. 
2 For example, Dubinsky (2000). 
3 This topic is widely discussed in the book edited by Cocking & Mestre (1988). 
4 Sfard (2001, p.28) 
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to suggest new teaching ideas. To achieve this goal some ideas borrowed from 
pragmatics (which is the subfield of linguistics dealing with the interplay between 
text and context) and functional linguistics (which is a theoretical stance within the 
field of pragmatics) are introduced. The colloquial way of using language (which is 
often the one adopted by students) is compared to the mathematical one through 
examples. The application of ideas from functional linguistics to mathematics has 
been carried out by a number of researchers such as Pimm (1987), Morgan (1996, 
1998), Burton & Morgan (2000). Also Sfard’s focal analysis (2000) might be related 
to standard topics of functional linguistics. Ferrari (2001, 2002) used the same ideas 
to interpret some empirical findings. This paper focuses on the theoretical aspects. 

MATHEMATICAL LANGUAGE AND ITS USE 
Through the paper I mostly refer to Italian Science freshman students and their 
learning problems in mathematics. At college level, students’ troubles are customarily 
ascribed to the lack of specific contents in their high school curricula. On the 
contrary, my claim is that students’ competence in ordinary language and in the 
specific languages used in mathematics are other sources of trouble. 
To point out some aspects of this topic, I give a couple of examples. The following 
problem has been given to a wide range of samples, from grade 7 to college.5

Example 1 

Link each sentence on the left to the sentence or the sentences on the right with the same 
meaning, if any. 
a) Not all the workers of the factory are 

Italian.
a') All the workers of the factory are 

foreigners
b)  No worker of the factory is Italian b') Some  workers of the factory are 

Italian.
c)  Not all the workers of the factory are 

not Italian. 
c') All the workers of the factory are 

Italian
 d') Some workers of the factory are 

foreigners
In all the samples (including college students) although most of the subjects properly 
treated sentence b), a good share connected a) to both b’) and d’), and the same 
happened for c). The more suitable treatment (from the mathematical standpoint) of 
sentence b) compared to sentences a) and c) is a common feature of all the samples.
Sentence a’) is equivalent to b) from the viewpoint of both everyday-life and 
mathematics. As regards sentences a) and c), the state of affairs is not so simple. 
From the mathematical viewpoint, d’) is equivalent to a). From the same perspective, 

                                          
5 The translation into English of a text written in another language may affect some linguistic properties of 
the original text. Here, the text is simple enough to be translated without substantially changing the features I 
am taking into account. 
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b’) is not equivalent to a) at all. Nevertheless, it is a conversational implicature of a). 
In the frame of pragmatics, a conversational implicature of a text6 is the portion of the 
information provided by the text that follows from the assumption that it is adequate 
to the context rather than from its propositional content. b’) does not follow from the 
content of a), but from the assumption that a) is appropriate. If b’) were false, then a) 
might be still true, but it would prove inadequate, as a sentence like a’) would be 
much more cooperative. Therefore, the link students recognize between a) and b’) 
does not reside in the propositional content of a), but in the assumption that it is a 
cooperative contribution to the exchange. It goes without saying that mathematical 
language7 is customarily forced to break cooperative criteria, which means that some 
implicatures cannot be drawn. 

Example 2 

(2A) Find a real polynomial p such that: 
(b) p has at least one real root;

(a) the degree of p is 2; 
(c) p has at least two integer roots.

This example is taken from Ferrari (2001). Problem (2A) is easily solved by almost 
all Science freshman students, after a short unit on real polynomials. The only source 
of trouble is the interpretation of ‘real’ and ‘integer’, which requires some accuracy, 
as the adoption of the mathematical use (according to which an integer is a real as 
well) rather than the everyday-life one (according to which the combined use of the 
two words may suggest the implicature that ‘real’ should mean ‘non-integer’). If the 
items (b), (c) are included in a more complex context such as problem (2B), students’ 
behaviors are quite different.
(2B) Find a real polynomial p such that: 

 (a) the degree of p is 4; 

 (c) p has at least two integer roots. 

(b) p has at least one real root; 

(d) p has at least one complex non-real root. 

Problems like be are usually solved by less than 60% of each sample of freshman 
students. Once more, the main obstacle resides in students’ failure in recognizing that 
any integer root is a real root as well. A good share of students who can apply this 
property to (2A) seem unable to apply it to (2B). Behaviors like these can be hardly 
ascribed to the lack of knowledge on integers and reals. More likely, in (2B) students 
focus on condition (d), who asks for the application of a theorem8 they regard as 
important and difficult. This condition is interpreted quite accurately, as most 
students are not misled by conversational schemes and realize that, though only one 
non-real root is mentioned, two of them are to be considered. The interpretation of 
                                          
6 By ‘text’ I mean any written or spoken instantiation of language of any length, not necessarily a book. 
7 Through the paper, by ‘mathematical language’ I refer to the language customarily used in doing and 
communicating mathematics at undergraduate level, including verbal and symbolic expressions. In this paper 
visual representations are not explicitly discussed, although they play a major role in communicating 
mathematics. 
8 “For any real polynomial p, if a complex number z is a root of p, then its conjugate z  is a root of p too.”
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‘integer’ and ‘real’ is not taken as a focal point of the problem and is performed 
according to conversational schemes. Notice that, as often happens in mathematical 
language, there are only few discourse markers to help the reader to recognize the 
global organization of the text, including focal points, goals and so on. Most likely, in 
problem (2A) the lack of an easily recognizable focal point, and the relative shortness 
of the text,  induces students to interpret all of the condition according to 
mathematical uses. It goes without saying too that these behaviors are common, and 
usually effective, in everyday-life contexts. 
Theoretical implications 
The above examples provide us a number of hints I am going to list.  
First, they corroborate the claim that troubles heavily involve the verbal component. 
Second, they point out that the interpretation of a text is hardly a plain translation 
(based on vocabulary and grammar), but involves the context the text is produced 
within (including participants and goals). Third, they suggest that the interpretation of 
texts is a cooperative enterprise which requires the readers (or hearers) to play an 
active role, performing some inferences, recognizing some part of the text as essential 
and focusing on them. Fourth, they show that the investigation of single expressions 
can hardly provide significant insights, but whole texts are to be taken into account; 
example 2 shows that some expressions may prove more or less troublesome 
according to the text they occur within. Finally, they suggest that everyday-life and 
mathematical language are considerably divergent as to use, and that this may prove a 
severe obstacle to learning.
The last point implies that, as the goal of just preventing students from adopting 
conversational schemes is of course neither a reasonable nor a viable one, they need 
to be able to recognize the two ways of using language and to switch between them. 
This requires some metalinguistic awareness that most often has to be built, as not all 
students have developed it. All these hints suggest that we need a theoretical frame 
apt to spot the use-related differences between mathematical language and ordinary 
one which are relevant to mathematics learning. For these reason we need to borrow 
ideas and constructions from pragmatics, which fulfils all the above requirements.  

A FUNCTIONAL PERSPECTIVE 
More precisely, I adopt the frame of functional linguistics, which focuses on 
functions of language rather than on its forms9. The emphasis on functions is quite 
appropriate because the gap between ordinary language and mathematical one mainly 
resides in the difference of the functions they play. Mathematical language is not 
shaped so as to promote interpersonal communication, but rather to provide an 
effective, well-organized picture of mathematical knowledge and to support the 
application of algorithms. Anyway, mathematicians, mathematics educators and 
                                          
9 The main sources in functional linguistics adopted in this paper are Halliday (1985) and Leckie-Tarry 
(1995).
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students must communicate. This may result in using the same words and 
constructions with different meanings, according to the goal of the text. As the 
examples above show, the conflict between the interpersonal function of language 
and the logical, ideational one may hinder students’ interpretations processes. 
The construction linking texts to contexts is register10. A register is defined as a 
linguistic variety based on use. It is a construction linking the situation to both the 
text, the linguistic and the social system. Each individual can use a register by 
selecting his or her own linguistic resources. Through the paper, the registers adopted 
in everyday-life are referred to as ‘colloquial’, whereas those adopted in academic 
communication and most books are referred to as ‘literate’. Colloquial registers are 
mostly adopted in spoken communication, although they may be used in writing too, 
as in informal notes, e-mail or sms messages, whereas literate ones are mostly 
adopted in written texts, though they may be used in spoken form too, as in academic 
lectures or some talks between educated people. Literate registers are not necessarily 
associated with advanced topics nor with high-level linguistic resources nor with the 
writers or speakers’ age. For example, a group of 2nd-graders writing down a report of 
some complex activity might actually use a literate register. 
One of the main claims of this paper is that the registers customarily adopted in 
advanced mathematics share a number of features with literate registers and may be 
regarded as extreme forms of them. Some specific features of mathematical registers, 
such as the violation of cooperation principles, the unfeasibility of most implicatures 
and the lack of discourse markers have been mentioned above. The example below 
points out some other aspects. 

Example 3 

A group of freshman students were required to recognize 
(and explain) which equation, out of the following 

(a) y = x3+1
(b) y = x3+x
(c) y = x2+ x 

might match the graph of the function f on the right.

�� �� � �

��

�

x

y

To explain her (right) answer, a student wrote the following text (translated into 
English verbatim).

“The graph is increasing and decreasing and passes through 0. I see that x and y >0 and 
x and y<0. So the graph corresponding to f is the equation (b).” 

Texts of this kind are quite common among freshman students. This one is quite 
inaccurate: the graph is described as ‘increasing and decreasing’ (which is inconsistent),
                                          
10 Here I adopt Halliday’s definition of register, which has been thoroughly discussed by Leckie-Tarry 
(1995).
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it is claimed that it ‘passes through 0’ (in place of (0,0)) and the second occurrence of 
‘graph’ is used to mean ‘equation’. The claim that the graph is ‘increasing and 
decreasing’ might be related to the student’s way of exploring the graph starting from 
the origin and moving rightwards or leftwards. The expression ‘x and y >0 and x and 
y<0’ is quite obscure as well. There are two interpretations available. Maybe the first 
and the third occurrence of ‘and’ are intended to express some logical relationship 
(such as ‘if x>0 then y>0’). On the other hand, the student when reading ‘x and y >0’ 
pointed her forefinger to the right side of the diagram, and when reading ‘x and y<0’
pointed to the right; maybe she meant to describe the two sides of the diagram 
separately, but in writing failed to make this reference explicit through words. In all 
cases, we are dealing with behaviors common in spoken colloquial registers: 
relationships between statements are not made explicit through syntax, and a 
conjunction like ‘and’ is used to express a variety of meanings; references to the 
context are not made explicit, maybe because in spoken communication the act of 
pointing or other gestures may get the same goal; words are used quite inaccurately, 
as often happens in spoken communication, where the addressee can ask for 
explanation if the meaning is not clear enough; the expressions explicitly defined in 
mathematical setting (such as ‘increasing function’) are used according to ordinary 
meaning rather than to the definition; little attention is paid to inconsistency. 
All the features of the text suggest that the student in question cannot use literate 
registers, or, if she can, some reason prevented her from actually using them. As a 
matter of fact, in literate written registers syntax is a basic way to express meanings, 
any reference to the context is made explicit through words, words are used 
accurately, and texts are to be consistent. These features of literate written registers 
are imposed by a variety of reasons including the need for communicating with 
people not sharing the same context the text has been produced within, and the need 
for representing a great amount of complex data with complex relations. In 
mathematical language, the above-mentioned features of literate registers occur in an 
extreme form, and, especially if the symbolic notations are involved, there are fewer 
opportunities of expressing meanings and organizing discourse. The role of syntax, 
for example, is crucial, as far as often it is the only way to express some meanings. 
The need for making any reference to the context explicit is even more acute; 
moreover, there is plenty of words whose meaning has been redefined and that are to 
be used accurately. On the other hand, despite all the criticism, it is undeniable that 
the text in question was somewhat effective, as the instructor understood its meaning 
after all. He had to be much cooperative, and most likely he was expected to be such, 
as students know that instructors know mathematics quite well. In general, in most 
teaching contexts, students expect instructors to be cooperative. If communication 
fails or if the instructor claims that the text is inappropriate, the student might ascribe 
failure not to his or her product, but to the lack of cooperation by the addressee.
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TEACHING IMPLICATIONS 
In the previous sections I tried to show that mathematical language shares a number 
of properties with written literate registers of ordinary language. This means that 
being familiar with literate registers and their use, which is not a ‘natural’ condition 
but has to be built, is a good starting point, if not a prerequisite, to learn to use 
mathematical language. This raises the problem of the methods more suitable to help 
students to learn to use literate registers. Of course this cannot be done just at 
undergraduate level, but a long-term work is needed which should start in primary 
school. Teaching methods based on grammatical patterns do not work anymore. On 
the other hand, in standard learning situation students are hardly required to deal with 
genuine communicative problems. Most often they are required to communicate 
mathematics to people who already knows it, and whose only task is to evaluate their 
performance. So we need to design learning situations requiring students to develop 
suitable linguistic or metalinguistic resources not in conformity to prearranged 
patterns, but as answers to shared communicative and representational constraints11.
At college level there are few opportunities to put into practice long term activities 
aimed at improving linguistic skills. Requiring high degrees of correctness to students 
with a poor linguistic background just means inducing them to learn by heart or to 
use stereotyped expressions with no understanding. On the other hand, some 
linguistic accuracy seems essential in doing and communicating mathematics, and 
must be developed anyway. To get this, verbal language is to be exploited as a tool to 
describe and justify procedures, and to gain a better control on performances.  
In this frame, discussions between students, at any age level, play a major role, as 
they provide some of the simplest teaching situations satisfying the conditions stated 
above. Of course, discussions alone do not produce mathematical knowledge, but 
nevertheless they may help students to develop linguistic skills that are essential to 
understand and communicate mathematics, if not to develop mathematical thinking. 
This requires a shift of emphasis from ‘solutions’ to verbal explanations and may 
involve students’ and teachers’ beliefs and attitudes towards mathematics and 
mathematics education.  
Information technology, if properly exploited, provides a variety of semiotic systems 
(verbal language, graphs, formulas, tables, …) which allow instructors to design 
activities requiring interpretation, comparison, conversion and treatment of 
representations, related to goals explicitly shared by students. Technology provides 
constraints (e.g., on the format of the data) that are often taken by students more 
easily than the ones put by the instructors, as they appear as objective requirements 
rather than decisions subject to the whims and moods of an individual. 

                                          
11 Ferrari (2002) has shown an example of an activity like that at middle school level.
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FURTHER DEVELOPMENTS 
The ongoing research on this topic is aimed at refining the comparison between 
colloquial registers and mathematical ones. This investigation should provide hints on 
the most appropriate ways of organizing texts intended for students as well as 
teaching ideas aimed at the improvement of linguistic skills and metalinguistic 
awareness through the design of teaching methods apt to develop linguistic resources 
matching the needs of scientific thought without generating needless obstacles. The 
full exploitation of the opportunities provided by information technology (including 
the availability of visual representations) is a necessary step to achieve all this. Last 
but not least there is the goal of making clear the interplay between the use of 
language and students’ beliefs and attitudes towards mathematics and languages. 
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ARITHMETIC/ALGEBRAIC PROBLEM-SOLVING AND THE 
REPRESENTATION OF TWO UNKNOWN QUANTITIES  

Eugenio Filloy, Teresa Rojano and Armando Solares 
CINVESTAV, Mexico 

We deal with the study of the senses and the meanings generated in the 
representation of the unknowns in the resolution of word problems involving two 
unknown quantities. The discussed cases show the difficulties that the students 
beginning the algebra learning have to deal with when using the equality between 
"unknown things". For them, applying the equality transitivity property between
different (but equivalent) algebraic expressions, or replacing an unknown quantity 
with its representation in terms of another one is not derived from an extension of the 
transitivity between numerical equalities or from the numerical substitution. This may 
have important implications in the algebra problem-solving teaching domain, in 
which it is usual to take for granted that students spontaneously transfer these 
numerical issues to the algebraic realm.
Previous research has been undertaken to probe cognitive processes that take place in 
solving word problems in the transition from arithmetic to algebraic thinking. 
Bernardz, Radford, Janvier,  & Leparge (Bernardz, Radford, Janvier,  & Leparge 
1992; Bernardz, 2001) have substantially contributed to this research area. Puig and 
Cerdan (1990) have formulated criteria to determine when a word problem can be 
considered as algebraic. From a different perspective, A. Bell (1996) has approached 
this matter by showing through examples how generic problems can provide 
algebraic experiences that develop manipulative algebraic abilities. Rojano and 
Sutherland (2001) have studied how technological environment can help students to 
represent and solve word problems without having to take on board with the algebra 
symbolic code, from the very beginning.  
The present paper addresses the theme of arithmetic/algebraic problem-solving from 
a different point of view. The results presented are part of the research program “The 
Acquisition of Algebraic Language ” (Filloy and Rojano, 1989; Rojano, 1994), which 
intends to throw light on the uses of Mathematical Sign Systems (MSSs) (Filloy, 
1990) which will culminate in the competent use of the System of Signs of Symbolic 
Algebra. In previous reports (Filloy, Rojano and Solares; 2003), we have dealt with 
the problems of the significations and senses generated in the acquisition of the 
syntactic abilities needed for the manipulation of what is “unknown” in solving 
equation processes. In the study we report here , we approach the same theme in  the 
context of the arithmetic/algebraic world problem resolution. We emphasize the role 
of teaching interventions  that promote the use of Signs Systems in which suitable 
strategies for the solution process may be developed. 
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THEORETICAL FRAMEWORK 
In this study, we adopt the theoretical perspective of Mathematical Sign Systems
(MSSs) developed by Filloy, Rojano, Puig (see Filloy, 1990) to analyze the different 
ways in which pupils specify what is unknown and identify the central relationships 
of a word problem during the solution process. In previous papers, we have referred 
to this actions as logical/semiotic outline (see for example Filloy y Rubio, 1993). 
Specifically, we use the theoretical elements that are define below.  
The ways to manage what is "unknown" and the resolution methods.- We call 
Method of Successive Analytic Inferences (MSAI) the classic analytic method, 
consisting of the conception of the problem formulation as descriptions of "possible 
states of the world", and the transformation of such descriptions through logical 
inferences. What is "unknown" in the problematic situation is interpreted as an 
unknown quantity (a particular number, the age of a person or a measurement of a 
figure, etc.) The solution is obtained as a "possible state of the world" in which the 
unknown quantity value is described (Filloy and Rubio, 1993). 
We call Cartesian Method (CM)  the one usually presented in the  algebra text 
books. In our theoretical perspective it consists of the representation of the 
relationships between the known and unknown elements using a Sign System (that of 
algebra) "more abstract" than  the one in which the problem is formulated, and which 
allows to transform these relationships into one or several mathematical texts the 
decoding of which gives the solution when returning to the original Sign System.  
Mathematical Texts and Teaching Models.- From this theoretical perspective, a 
Teaching Model is understood as a problem situation sequence, that is, a
mathematical text sequence Tn (Filloy, 1990), which production and decoding 
enable to interpret, finally, all the texts Tn is an MSS more abstract, which code 
makes it possible to decode the texts Tn as messages with a socially well-established 
mathematical code: the one proposed by the educational aims. 
Sense of a method.- During the learning process, the competent use of the  method is 
achieved through the concatenation of the actions triggered by the solution process 
(Filloy, 1990; Filloy, Rojano and Solares; 2003). Such  concatenation, carried out at 
each stage of the Teaching Model, produces what we call the sense of the method.
THE EXPERIMENTAL DESIGN 
We use  the methodological framework of the Local Theoretical Frameworks
(Filloy, 1990) in which each specific object of study is analyzed through four 
interrelated components: (1) a Teaching Model, (2) a Cognitive Processes Model, (3)
a Formal Competence Model, that simulate competent performance of the ideal user 
of a MSS, and (4) a Communication Model.
We analyzed protocols from videotaped clinical interviews carried out  with 15 13-14 
year old pupils from “Centro Escolar Hermanos Revueltas”, in Mexico City. These 
students had already been taught on how to solve linear equations with one unknown 
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and related word problems. At the beginning of the study, these pupils showed to 
have different ability degrees in these  algebra topics.
The script of the interview was  designed on the basis of  a Teaching Model that
introduces the resolution of word problems involving two unknown quantities 
through a sequence of mathematical texts divided into two blocks:
1. Abaco Problems (problems of the form “Find a number that…”), and 
2. Problems in context (formulated in different contexts, such as geometry and ages 

calculation)  
Based on the Formal Model analysis the items for blocks (1) and (2) were designed 
as follows: We designed Abaco problems that are associated with two equations 
systems formed by an equation of one unknown and another involving two 
unknowns. The problems in context designed are associated to systems formed by 
two equations, both involving two unknowns. Items in both blocks were presented to 
pupils according to the syntactic complexity (from less to more complex).  
RESULTS FROM  THE INTERVIEW ANALYSIS. 
We analyze interview excerpts from three cases. Two of them, An and Mt are  highly 
competent students in relation to operating one mathematical unknown, and the third 
one, L, is an  average- student in the same terms. These cases allow us to analyze the 
difficulties that subjects have to cope with problems involving two unknown
quantities. We shall focus on the problems in context block, for in this part of the 
interview, pupils are required to develop new solution methods as well as new 
semantics and syntax associated to  such methods. On the basis on these three cases, 
we discuss children’s productions in the perimeter problem and in the ages problem.
Regarding the results found in the Abaco problems block, it is important to mention 
that pupils could identify the two unknown quantities and recognize the two 
restrictions on their numerical values. In the same block all the subjects deal  with the 
solution of the Abaco problems  following a route of three steps: (1) finding the 
unknown value  in the one-unknown "equation"i, (2) replacing  the found value in the 
two-unknown "equation", and (3) finally, finding the value of the second unknown. 
This route coincides in appearance with the Formal Model steps to solve this sort of 
problems. Nevertheless, what children do is to follow the route using a variety of 
MSS strata, such as natural language, arithmetic or algebra, and not necessarily that 
of the manipulative algebra. Due to the regularity with which this spontaneous 
strategy manifests itself  and to the importance it attaches later, we will call it strategy 
S(1,2).
The perimeter problem:  

The perimeter of a rectangle is 5 times its width, the length measures 12 meters ¿How 
much does the width measure?  

This is the first problem in the interview in which the two equations include both 
unknowns. The subjects translate with no difficulties the problem into the algebraic 
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language and find and equation system of the form:  P = 5a and P = 24 + 5a  They 
interpret these expressions as texts about unknown quantities, the measurement of 
the width "a" and the measurement of the perimeter "P". After solving the Abaco
problems block, they realize that if they find the value of one of theses unknown
quantities, they will be able to find the value of the other one and solve the problem.
The strategy S(1,2) and the two symbols.- L intends to apply strategy S(1,2), but 
after a number of syntactic transformations performed on the equations she notices 
that it is not possible to apply such strategy: 
L: I want to, I mean  I want to solve the... I want to solve this 
equation.
L: This is going to change from this side to the other side, 
subtracting. But I have two symbols: “P” and “a”.
L: Look, I want to find the value of “a”, but... ¡Ups! No, I don't 
know….

She points out  the equation she 
previously wrote: 24 + 2a = P.
She points out 2a.

She points out 2a and then writes: 24
= -2a

The appearance of the two unknown quantities in both equations does not allow her 
to apply strategy S(1,2), which previously allow her to solve all the previous 
problems. This phenomenon appears in all the cases analyzed. Two main algebra 
concepts that children will build up later on will allow them to apply this strategy. 
The concepts in question are: algebraic transitivity and equality between algebraic 
expressions.
Algebraic transitivity and numerical transitivity.- Unlike what is taken for granted in 
algebra traditional texts books, the transitivity between algebraic expressions is not 
derived from a simple extension or generalization of the numerical transitivity. For 
the cases we analyze, applying the transitivity property to the equations of this 
problem makes sense only when such property is referred to the problem context. 
This issue is illustrated with the following excerpt. 
Mt wants to find the value of the width (represented by "x" in her case). She has 
written these set of equations: P = 5x and P = 24 + 5x.

For Mt establish apply the transitivity to the expressions for the perimeter only has 
sense if there is a number that makes the equation true. In fact, Mt refuses to write the 
equation among the expressions and only does it once the width numerical value is 
found.
In short, to solve this problem, pupils carry out a series of analytic inferences (MSAI) 
that give sense to the algebraic expressions equalization. For them, the unknown

I: ¿Don't you figure out how could we get the value of "x". 

Mt: Well, yes. Let's see ... “8” plus “24”... makes “16”…No! 
Okay, I have already found out how!  

Mt: So, now we have two "x" plus 24.  

Mt: Here we have “x” two times and here we have “x” five times.  

Mt does some calculations verbally.  
Mt writes down: 8. This is the value 
of  the width that solves the problem. 

Mt writes the equation: 2x + 24 = 5x.
Here Mt equalize the two expressions 
she has for the perimeter. 
Mt points out 2x and 5x.
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quantities have their referents, whether in the rectangle drawing corresponding to the 
problem or in the number that makes true the corresponding numerical equation. This 
tendency to be attached to the problem context makes in these cases that the 
transitivity is carried out for quantities (not for algebraic expressions).
The ages problem:

The difference between the ages of Juan and Carlos is of 12 years. In 4 years time Juan, 
who is the oldest, will double Carlos’ age.  Which are the current ages of both?

This problem solution represented new difficulties for the interviewees. Its syntactic 
complexity demands not only high translation skills, but also to apply the sense of the 
actions recently generated: the use of one unknown expression given in terms of 
another unknown factor. 
Manipulating the unknown through the MSAI.- An resorts to his high logical 
analysis competencies to solve this problem. Although he is highly competent in 
manipulating one unknown, he does not have yet the necessary syntactical 
competencies to algebraically manipulate the two unknowns of the problem. An uses 
the algebraic code to represent the relationship between data and unknowns, and 
understand them as numerical relationships between unknown quantities (Juan and 
Carlos' ages). These mathematical texts allow him to analyze the relationships by 
applying MSAI. He spontaneously carries out the following reasoning: 
An: The difference between Juan 
and Carlos' ages is of 12 years. 
Juan, I'll name him “J”, then you 
have that  “J – C = 12” and we 
also have that “J + 4” will be 
equal... yes!, “J + 4 = (C + 4) 2”.

An: Then, lets first see which we 
can get..., we get..., I've got it, 
wait, Juan's age..., no here.

An: I have to get that 12 will be 
the difference, even, of these two.  

An: So Carlos' age up to that date 
would be 12…  

An:…and the age of Juan would 
be 16 in 4 years time. No!, it 
wouldn’t be 16. The age of Juan 
would be 24 in 4 years time.  

An: So, from it I get that Juan is 
now 20 years-old, and Carlos is 8 
years-old, the difference is 12… 
and this other thing I have would 
be 20+4 equal to (8+4)2, 8+4 is 
equal to 12, 2 times 12 is equal.   

Here he finds the associated 
system of equations: J – C = 
12 and J + 4 = (C + 4) 2.

He points out the equation: J
+ 4 = (C + 4) 2.

He points out J + 4 and C + 4
in the equation: J + 4  = (C + 
4) 2.
He points out J + 4 and C + 
4.

He refers to the equation: J – 
C = 12.

He points out the equation: J
+ 4  = (C + 4) 2. He makes 
the calculations verbally. 

Observations. 
An’s reasoning for finding the 
current ages is the following: After 
translating the problem into the 
algebraic language, he realizes (as 
an obvious implication of the 
problem context) that the 
difference between Juan and 
Carlos’ ages will be always of 12 
years. Specifically, in 4 years time 
it will be of 12 years. But he also 
knows that in 4 years time, Juan’s 
age will be the double of Carlos’ 
age (up to that date). So, he have 
that in 4 years time Juan’s age will 
be: (1) Carlos’ age up to that date 
plus 12 years (because the ages 
difference is always 12 years), but 
it will also be (2) two times the age 
of Carlos(up to that date). 
Then, he deduces that one time the 
age of Carlos( up to that date) has 
be equal with 12 years.  

Then, up to that date, Juan’s age 
will be 24.From that, he obtains 
that the current ages are 20 and 8. 
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An carries out the series of analytic inferences from the Natural Language Signs 
System. He does not need to use any strictly algebraic transformation nor 
signification. His solution requires a complicated logical analysis and an intense use 
of the working memory. 
Actions sense and the need for the mathematical unknown notionii.- L and Mt did 
not show to have the same logical analysis level as An in the ages problem. They 
require the interviewer’s intervention to overcome the difficulties encountered in this 
problem. Introduction of the mathematical unknown notion was necessary. Lets see 
how it is done in L's case. 
She has not acquired the competencies to interpret Carlos and Juan's ages as 
mathematical unknowns, which would allow to syntactically manipulate them. At 
the outset, she interprets them as unknown quantities, which she cannot operate 
because she do not known its value.

At this moment, the teaching intervention was necessary to favor the strategies and 
interpretations that allow to solve the problem: 

Once the mathematical unknown notion was introduced, L solves the problem 
picking up the sense learned in the previous problem (the perimeter problem):

With the intervention of I, L has translated the problem to the 
system of equations: J – C = 12 and J + 4 = 2 (C + 4).

I: Here you have that Juan’s age minus Carlos’ age equals 12.  
If we had here a number, for example 10, could you find Juan’s 
ages value? 
L: Yes! Adding these two. 
I: Ok. So, if we knew Carlos’ age, could we calculate Juan’s age?  
L: Yes!  
I: How? 
L: Adding Carlos’ age to 12. 
I: Then, if I represent Carlos’ age with C, how much is the value of 
Juan's age? 
L: I don’t know it yet.

I points out the equation: J – C = 12 
I writes 10 below C in that equation. 

L points out 10 and 12.

I points out C and J in the equation: J
– C = 12.

I: How much would “J” value? It is a number, a number you don’t 
know, but it is a number. Suppose that I already know what number 
is it, but I do not want to tell you. I'll call it "C". I tell you: it is “C”.
Then, how much is the value of Juan's age? 

L: “C” plus 12. L writes the equation: J = C + 12

L already got the equations: J = C + 12 and J + 4 = 2 C + 8.
Below them she writes the equation: (C + 12) + 4 = 2C + 8.

I: What did you do? Why did you put that here?  

L: So that... Do you remember when “P”... when here... we 
replaced it with “5a”? Well, here I substituted "J" by "C plus 12”,
so that there are only "C's".

I points out C + 12 in the equation: (C
+ 12) + 4 = 2C + 8.
L points out to the perimeter problem. 
She points out the J in the equation: J
+ 4 = 2C + 8, and C + 12 in the 
equation: (C + 12) + 4 = 2C + 8.
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L makes a substitution in accordance with the (intermediate) sense learnt in the 
perimeter problem: “I substituted "J” by “C” plus 12 so that there are only “C’s””.
L's actions are addressed by the application of the strategy S(1,2).
Although, in the cases we analyzed, introducing the notion of mathematical
unknown  was crucial, this notion had to be interpreted by the subjects in terms of 
concrete referents (those of the arithmetic MSS), in order to manipulate an unknown 
factor in terms of the other or to apply the transitivity property to “algebraic 
expressions”. In fact, in this new transition step (when students for the first time have 
to deal with problems and systems of equations involving two unknowns), building 
up more abstract notions involves interpretations of such notion at a more concrete 
level.

FINAL REMARKS AND TEACHING  IMPLICATIONS 
Issues arising from this study suggest that dealing with problems and equations 
involving two unknowns quantities imply the necessity to re-elaborate: (a) the notion 
of mathematical unknown, (b) the notion of algebraic equality, and (c) the notion of 
algebraic representation of the unknown. Nevertheless, traditional teaching models 
introduce the problems with several unknown quantities, assuming that, once the first 
elements of the algebraic language are acquired, the further development of algebra 
will be carried out because of a simple extension of what was previously learned: one 
unknown representation and manipulation.
Specifically, some of these results show that applying the equality transitivity 
property between  different (but equivalent) algebraic expressions, or representing an 
unknown in terms of another one , are not derived from a generalization of the 
numeric equality transitivity property, nor from the numerical substitution. 
Additionally, advantages and difficulties of the MC are shown. The application of the 
MC allows to translate the sentences given in the Natural Language Signs System 
into mathematical texts given in the algebraic MSS and then to apply syntactic 
transformations in said SS . In this way, it is prevented that the significations specific 
of the problem context interfere the final analysis stage of the resolution process and 
the operation of the unknown is enabled. 
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EQUITY AND COMPUTERS FOR MATHEMATICS LEARNING: 
ACCESS AND ATTITUDES 

Helen J. Forgasz
Monash University, Australia 

Equity and computer use for secondary mathematics learning was the focus of a 
three year study. In 2003, a survey was administered to a large sample of grade 7-10 
students. Some of the survey items were aimed at determining home access to and 
ownership of computers, and students’ attitudes to mathematics, computers, and 
computer use for mathematics learning. Responses to these items were examined by 
several equity factors (gender, language background, socio-economic status, 
geographic location, and Aboriginality), by grade level, and by mathematics 
achievement self-ratings. Equity factors were more salient with respect to computer 
ownership than with attitudes. Attitudes to computers for mathematics learning were 
more strongly related to attitudes to computers than to attitudes to mathematics. 
INTRODUCTION AND PREVIOUS RESEARCH 
The use of technology, including computers, is widely believed to be beneficial to 
students’ learning of mathematics (Forgasz, 2003). The Victorian (Australia) 
government has instigated the Bridging the digital divide initiative (Department of 
Education and Training [DE&T], 2002a) which is said to ensure: 

equity of access to information and communication technology for all students, 
regardless of socio-economic or geographic disadvantage. The 2001/02 State Budget 
provided $23 million over three years for additional computers and networking… to 
bring all schools to a 1:5 computer to student ratio… (DE&T, 2002a, p.1) 

Hence, it is expected that for students in Victorian government schools today there 
should be access to computers for learning across the curriculum, including 
mathematics. Through the access@schools program, schools in regional and rural 
Victoria (that is, non-metropolitan areas) are said to have been enabled “to provide 
their local communities with free or affordable access to the Internet and to their 
information and communication technology (ICT) facilities” (DE&T, 2002b, p.1).
Government initiatives such as those described above are to be applauded. Yet, 
findings from previous research would suggest that equity issues with respect to 
education generally (e.g., Teese, Davies, Charlton, & Polesel, 1995), and to 
mathematics teaching and learning in particular (e.g., Allexsaht-Snider & Hart, 
2001), are complex. That is, by simply providing more computing equipment and 
cheaper access to ICT, it cannot be assumed that equity of access will automatically 
result, a view expressed in the UK by Selwyn, Gorard and Williams (2001). 
Previous research findings on attitudes to computer use in education have also 
revealed inequities. Forgasz (2002) summarised a number of gender differences 
favouring males including: enjoyment, perceived competence, views on usefulness, 
parental encouragement, personal computer ownership, tertiary course enrolments, 
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programming, and game playing. Based on three sets of items included in a survey 
questionnaire administered to a large sample of grade 7-10 students, Forgasz (2002) 
found that the students did not appear to stereotype mathematics as a male domain,
held beliefs about computers that were consistent with the traditional perception of 
male technological competence and female incompetence, but were a little more 
ambivalent when computers were associated with the learning of mathematics. 
Students were reported as being less convinced than their teachers that computers 
help mathematical understanding; female students were less convinced than their 
male peers, and no differences in beliefs were noted by student ethnicity or socio-
economic status (Forgasz, 2003). According to Hanson (1997), however, computer 
use is not an educational panacea but exacerbates inequities with respect to 
race/ethnicity and socio-economic status [SES]. In contrast, Owens and Waxman 
(1998) reported greater computer use by African American students than by white 
and Hispanic students and postulated that positive attitudes explain the findings.
Using an attitudes instrument that they developed, Galbraith, Haines and Pemberton 
(1999) found that their computer-mathematics subscale correlated more strongly with 
computer confidence and computer motivation than with the equivalent mathematics 
measures; no equity dimensions were considered in this research study. 
The extent to which students in Victorian schools have access to computers for 
mathematics learning at school and at home is not known. Whether equity of access, 
based on gender, socio-economic status, ethnicity, and geographic location, has been 
achieved is also not known. The relationships between students’ attitudes to 
mathematics, to computers, and to computer use for mathematics learning have not 
been examined by this same range of equity factors. For this paper, data on these 
issues have been explored and the results presented and discussed. 
AIMS AND METHODS 
The focus of the three-year study from which findings are reported in this paper was 
on the use of computers for the learning of secondary level (grades 7-10) 
mathematics. In summary, the research design for the three years included: 
Year 1: surveys of mathematics students in grades 7-10 and their teachers; survey of 

grade 11 students reflecting on previous use of computers for mathematics 
learning – 29 schools were involved. 

Year 2: in-depth studies of grade 10 mathematics classrooms at three schools – 
surveys, observations, interviews. 

Year 3: repeat of Year 1 surveys in same schools – only 24 schools participated. 
If students are to benefit from using computers for mathematics learning, they need to 
be able to access them, as required, both in school and at home. One of the aims of 
the present study was to establish the extent to which students do have such access 
and whether there are any issues of equity with respect to that access.
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Included in the survey questionnaires administered in 2001 and in 2003 were 
questions about: computer organization in schools and use of them for mathematics 
learning; and computer access at home. Data were also gathered from students on a 
range of equity factors including: gender; socio-economic status (SES1); two 
dimensions of ethnicity – language spoken at home (ie. ESB/NESB2), and 
Aboriginality (ATSI3); and geographic location of school attended (metropolitan or 
rural). Grade levels and students’ self-ratings of mathematics achievement level 
(SMA) were other variables considered important for analysis. To determine self-
ratings of mathematics achievement, students were asked to rate their mathematics 
achievement levels on a 5-point scale: 5=excellent to 1=weak.  
Previous research findings have revealed differences in attitudes towards 
mathematics on a range of equity factors. Thus, another aim of the present study was 
to measure students’ attitudes to mathematics (AM), to computers (AC), and to using 
computers for learning mathematics (ACM), and to examine if there were differences 
in these attitudes on the same range of equity factors as for computer access. It was 
also considered important to identify the relationships between the three attitude 
measures to determine if students’ attitudes to the use of computers for mathematics 
learning were more strongly related to attitudes to computers or to attitudes to 
mathematics. The survey questionnaire included three clusters of eight Likert-type 
items with 5-point response formats (strongly disagree to strongly agree) to measure 
these attitudes. The eight AM items were drawn from previous instruments. Slight 
wording modifications to some of the AM items, and items drawn from other 
instruments (e.g., Galbraith et al., 1999) made up the other two clusters of items.  
For each cluster of items, a reliability check and a principal components factor 
analysis were conducted to determine if the items formed a uni-dimensional scale. As 
a result of the analyses, poor items were eliminated. The characteristics of the three 
resulting attitude scales, with sample items, are summarised in Table 1. 
Attitude scale Items Sample items Alpha Meana SD
Mathematics (AM) 7 I enjoy mathematics .745 3.70 .70 
Computers (AC) 5 I feel confident using 

computers 
.722 3.35 .76 

Computers for 
mathematics (ACM) 

5 Using computers helps me 
learn mathematics better 

.756 3.15 .74 

a For ease of comparison, the mean shown is the scale mean divided by the number of items in the 
scale.

Table 1: Summary characteristics for the three attitude scales 
                                          
1  SES was determined from postcodes (zip codes) found in ABS (1990). 
2  NESB (Non-English speaking background): defined by positive responses to: “Do you regularly 

speak a language other than English at home?" 
3  ATSI = Aboriginal or Torres Strait Islander
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RESULTS AND DISCUSSION 
The sample 
In 2003, the sample comprised 1613 grade 7-10 students from 24 schools in the state 
of Victoria, Australia. There were approximately equal numbers from each grade 
level: 425 (26%) Gr.7, 415 (26%) Gr.8, 396 (25%) Gr.9, 377 (23%) Gr.10. More than 
half of the students, 917 (57%), attended schools in metropolitan Melbourne. 
In Table 2, the composition of the sample is shown by a range of equity factors – 
gender, socio-economic status (SES), language background (NESB), and 
Aboriginality (ATSI); response frequencies and valid percentages are shown.
Gender SES 
F M High Medium Low NESB ATSI 

810
51%

794
49%

251
16%

914
59%

390
25%

359
22%

28
2%

N: 1604 N: 1555 N: 1607 N: 577 

Table 2:  Grade 7–10 students by equity factors 
The data in Table 2 reveal that there were approximately equal numbers of females 
and males, most students (�60%) were from medium socio-economic backgrounds, 
about a fifth (22%) of the students speak a language other than English at home, and 
that a very small minority (2%) was Aboriginal. The sample profile is not 
inconsistent with 2001 Australian census data in which it was found that: 40% of 
Australians live outside capital cities; 0.5% of Victorians identified themselves as 
ATSI; and 75.3% of Victorians reported being English speakers at home (Australian 
Bureau of Statistics [ABS], nd). Based on ABS (1990), the proportions of high, 
medium, and low SES backgrounds in the state of Victoria are: 19%, 59% and 22% 
respectively. Thus, the SES profile of the sample was also representative of the 
population of the state of Victoria. 
Self-ratings of mathematics achievement (SMA) 
The mean self-rating of mathematics achievement was 3.61. There was a statistically 
significant difference by gender: F= 3.49, M=3.74; t=-5.86, p<.001. The frequencies 
(and percentages) of the achievement self-rating levels are shown in Table 3. It can 
be seen that the vast majority of students considered themselves average or better in 
mathematics. 
 5=Excellent 4=Good 3=Average 2=Below average 1=Weak
N=1608 228 (14%) 689 (43%) 571 (36%) 81 (5%) 39 (2%) 

Table 3: Students’ self-ratings of mathematics achievement 
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Access to computers at school and home, and student ownership of computers 
According to the teachers of the students who also completed a survey instrument, 
each school had computing resources, regardless of its geographic location or its 
socio-economic categorization. Computer laboratories were found in all schools and 
several also had a single computer or clusters of computers in classrooms. About 
52% of the students reported having a CD-ROM accompanying their mathematics 
textbooks; 46% of their teachers said that students had used the CD-ROMs. The 
survey was administered half way through the academic year. At that time 63% of the 
students reported having used computers in mathematics classes that year and 79% 
reported having used computers for mathematics in earlier years of schooling. 
Of the 1533 students responding to the item computer access at home, 97% (1487) 
indicated that there was at least one computer available to them; 53% (808) reported 
having at least two computers. For those with at least one computer at home, the 
extent of student personal computer ownership (frequency and related percentage) by 
equity factors is summarised in Table 4. Chi-square tests were conducted to test for 
statistical significance by each equity factor. The results are also shown in Table 4. 
Gender SES Language Aboriginality Location 
F M Hi Med Lo ESB NESB ATSI non-ATSI Metro Rural
249
33%

341
47%

184
50%

294
35%

88
38%

410
36%

177
55%

13
57%

559
39%

413
49%

179
28%

p<.001 p<.001 p<.001 ns p<.001 

Table 4: Student computer ownership by equity factors and �2 results 
As shown in Table 4, for all equity factors other than Aboriginality, there were 
statistically significant differences in the proportions of students owning their own 
computer. A higher proportion of males than females, of high SES than medium and 
low SES students, of NESB than ESB students, and of students attending 
metropolitan than rural schools owned their own computers. 
It was not surprising to find that more high than medium or low SES students owned 
computers. Since more wealth is found in Australia’s large cities than in rural areas, it 
was also not unexpected to find that students at schools outside metropolitan areas 
were less likely to own computers. The known migrant phenomenon of ‘aspiring to 
upward mobility’ may explain the higher computer ownership rates among NESB 
than ESB students. That parents are more likely to purchase computers for their sons 
than their daughters supports previous research results. This finding is of concern as 
it reflects a pattern of stereotyping that Australian educators no longer expect to find.
The results of the chi-square tests also indicated statistically significant differences in 
the proportions of students owning computers by grade level (p<.001) and by self-
ratings of mathematics achievement (p<.05). Computer ownership increased with 
grade level (Gr.7: 32%, Gr.8: 37%, Gr.9: 45%, and Gr.10: 46%) and was highest 
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among those who considered themselves weak at mathematics, followed by those 
who considered themselves excellent: weak - 58%, excellent - 47%, below average - 
43%, good - 39%, and average - 37%. The second of these findings was unexpected. 
Perhaps some parents believe so strongly that computers will help their offspring 
educationally that they are prepared to buy computers for children whose 
mathematics achievement levels are expected to improve as a result of the purchase. 
Attitudes to mathematics, computers, and computers for learning mathematics 
Mean scores on the three attitude scales by the various equity factors, by self-ratings 
of mathematics achievement, and by year level were compared using independent 
groups t-tests or one-way ANOVAs as appropriate. The results are summarised in 
Table 5 - space constraints precluded inclusion of mean scores in each sub-category. 
 Gender SES Language Aboriginality Location SMA Grade
AM M>a*** Hi>*** NESB>*** non-ATSI>*** Metro>*** 5>*** 7>* 
AC M>*** ns NESB>* ns ns 5>*** 7>***
ACM M>*** ns NESB>* ns ns 5>*** 7>***
a  M> means that Males scored higher on average than did Females   
* p<.05 ** p<.01 ***p<.001 ns=not significant 

Table 5: Attitudes by equity factors: t-test/ANOVA results 
The data in Table 5 indicate that for all three attitude measures, males, NESB 
students, students who consider themselves excellent at mathematics, and grade 7 
students consistently held more positive attitudes than their peers in the respective 
equity categories. There were also statistically significant differences in mean scores 
by each equity factor on the AM scale and fewer statistically significant differences 
were found for the other two, similarly behaving, attitude scales. 
Relationships among the attitude scales 
Pearson bi-variate correlations between the three attitude scale measures, students’ 
self-ratings of mathematics achievement (SMA), grade level, and student SES are 
shown in Table 6. 
 AC ACM SMA Grade level SES
AM .20* .18* .58* -.07 .06 
AC  .57* .15* -.11 .02 
ACM   .12* -.25* .04 
SMA    -.03 .06 
Grade level     -.06 
* p<.01 

Table 6: Bivariate Pearson product-moment correlations 
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The bivariate Pearson product-moment correlations found in Table 6 reveal: 
moderately high correlations between AM and SMA (0.58) and between AC and 
ACM (0.57); small positive correlations between AM and AC, AM and ACM, and 
between AC and SMA; a small negative correlation between ACM and grade level; 
and no significant correlations at the p<.01 level with SES. 
The high correlation between AM and SMA (0.58) supports earlier reported findings 
relating mathematics achievement and positive attitudes, particularly confidence, 
towards mathematics (e.g., Leder, 1992). The high correlation between AC and ACM 
(0.57) and low correlation between AM and ACM (.18) mean that attitudes to 
computers for mathematics learning are more closely associated with attitudes to 
computers than to attitudes to mathematics. These results are consistent with
Galbraith et al.’s (1999) findings with tertiary mathematics students. These 
correlations need to be monitored and explanations found for them.  
The small negative correlation between ACM and grade level supports previous 
findings that younger students are more positive about mathematics than older 
students (e.g., Cao, Forgasz, & Bishop, 2003). The finding of no significant 
correlations with student SES is important in that it suggests that attitudes towards 
mathematics, computers, and computers for mathematics learning, do not seem to be 
affected by the inequity of SES in student personal computer ownership. 

FINAL WORDS 
In summary, the findings reported in this paper indicate that there are equity issues 
associated with grade 7-10 students’ personal computer ownership and with their 
attitudes towards mathematics, computers, and computers for mathematics learning. 
As discussed above, many of the findings reported here were consistent with earlier 
published research results.  
Interestingly, SES and geographic location were equity factors implicated in 
computer ownership and in attitudes to mathematics, but not in the two attitude 
measures associated with computers. Compared to their respective counterparts, 
males, students from non-English speaking backgrounds, and students with higher 
self-ratings of mathematics achievement, appear advantaged with respect to computer 
ownership as well as holding more positive attitudes on all three attitude measures. 
Based on previous research linking attitudes to participation (e.g., Leder, 1992), they 
are the ones more likely to persist with higher level studies in mathematics. 
That the attitudes to computers for mathematics scale was found to be more highly 
correlated with the attitudes to computers scale than to the attitudes to mathematics 
scale raises a number of issues worthy of further research. As computer use becomes 
more widespread in mathematics classrooms, what will be the impact on students’ 
attitudes towards mathematics and to their longer term participation in mathematical 
studies? Will there be differential effects that re-inforce or challenge more traditional 
patterns of disadvantage with respect to mathematics learning outcomes? What will 
become of those who hold less positive attitudes towards computers? Issues of equity 
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and affect associated with computer use in mathematics classrooms must not be 
ignored if students’ opportunities to learn mathematics are to be optimised. 
References 
Allexsaht, M., & Hart, L. E. (2001). “Mathematics for all”: How do we get there? 

Theory into practice, 40(2), 93-101. 
Australian Bureau of Statistics [ABS]. (nd). ABS website: http://www.abs.gov.au. Accessed 

8 January, 2004. 
Australian Bureau of Statistics [ABS]. (1990). Socioeconomic indexes for areas. Catalogue 

No. 1356.0. Canberra: Australian Government Printing Service. 
Cao, Z., Forgasz, H., & Bishop, A. (2003). Students’ attitudes towards mathematics: Some 

findings from Victorian schools. In B. Clarke, A. Bishop, R. Cameron, H. Forgasz, & W. 
T. Seah (Eds.). Making mathematicians (pp. 320-328). Brunswick, Vic: Mathematical 
Association of Victoria. 

Department of Education and Training [DE&T]. (2002a). Bridging the digital divide. About.
Available on-line: http://www.sofweb.vic.edu.au/ict/bdd/index.htm (Accessed 11 Jan. 
2004)

Department of Education and Training [DE&T]. (2002b). access@schools program. Home. 
Available on-line: http://www.sofweb.vic.edu.au/ict/access/index.htm (Accessed 11 Jan. 
2004)

Forgasz, H. J. (2002). Computers for learning mathematics: Gendered beliefs. In A. D. 
Cockburn & E. Narda (Eds.), Proceedings of the 26th Conference of the International 
Group for the Psychology of Mathematics Education, Vol.2 (pp.2-369 – 2-375). 
Norwich, UK: University of East Anglia. 

Forgasz, H. J. (2003). Equity and beliefs about the efficacy of computers for mathematics 
learning. In N. A. Pateman, B. J. Dougherty & J. Zilliox (Eds.), Proceedings of the 2003 
Joint Meeting of PME and PMENA Vol.2, (pp.2-381–2-388). Honolulu, HI: Center for 
Research and Development Group, University of Hawai’i. [Available on CD-ROM] 

Galbraith, P., Haines, C., & Pemberton, M. (1999). A tale of two cities: When 
mathematics, computers and students meet. In J. M. Truran & K. M. Truran (Eds.), 
Making the difference (pp.215-222). Adelaide: MERGA Inc. 

Leder, G. C. (1992). Mathematics and gender: Changing perspectives. In D. A. Grouws 
(Ed.), Handbook of research on mathematics teaching and learning (pp.597-622). New 
York: Macmillan. 

Owens, E. W., & Waxman, H. C. (1998). Sex-and ethnic-related differences among high 
school students’ technology use in science and mathematics. International Journal of 
Instructional Media, 25(1), 43-54. 

Selwyn, N., Gorard, S., & Williams, S. (2001). The role of the ‘technical fix’ in UK lifelong 
education policy. International Journal of Lifelong Education, 20(4), 255-271. 

Teese, R., Davies, M., Charlton, M., & Polesel, J. (1995). Who wins at school? Boys and 
girls in Australian secondary education. Canberra: AGPS. 



www.manaraa.com
Proceedings of the 28th Conference of the International  
Group for the Psychology of Mathematics Education,  2004 Vol 2 pp 407–414

THE TACIT-EXPLICIT DYNAMIC IN LEARNING PROCESSES 
Cristina Frade

Universidade Federal de Minas Gerais – UFMG  

In this report we present the methodology used in a study that investigated the tacit-
explicit dynamic in learning processes. We have analyzed an episode related to a 
discussion about the difference between plane figures and spatial figures promoted 
by the teacher in her mathematics classroom (the students are aged 11 to 12). The 
data analysis was based on some aspects of Polanyi’s theory on tacit knowledge, and 
benefited from a variation of the ‘graph-theoretical model for the structure of an 
argument’ developed by Strom, Kemeny, Lehrer and Forman. The methodology 
employed exhibited a strong indication that the lack of correspondence between what 
the students are uttering and their original understandings is related to the tacit-
explicit dimension.  

INTRODUCTION  

In a recent study Frade and Borges (2002) analyzed some current curricular goals in 
the light of Ernest’s (1998b) model of mathematical knowledge, according to its 
mainly explicit and mainly tacit components. The materials examined were suggested 
by curricular documentations from several countries and at different levels of 
teaching. The analysis showed the prevalence of the mainly tacit components over 
the mainly explicit in such curricular goals.   

Since then, we have been working on this subject aiming at a better understanding of 
the tacit dimension of mathematics teaching and learning. Throughout our process of 
investigation we found different references to Polanyi’s (1962, 1969, 1983) concept 
of tacit knowledge. Fischbein (1989), Tirosh (1994) and Sternberg’s (1995) 
researches address what can be called ‘Polanyi’s psychological version of tacit 
knowledge’: knowledge that functions as subsidiary to the acquisition of other 
knowledge. On the other hand, Ernest (1998a,b) and Wenger (1998), for example, 
use the words ‘tacit’ and ‘explicit’ as opposites to refer to different, but 
complementary dimensions of the same component of a certain practice. Whatever 
the case, the above-mentioned authors share in some way Polanyi’s epistemological 
thesis that all knowledge is tacit or constructed from tacit knowledge (Polanyi, 1969). 

In this report we present the methodology employed in the analysis of an episode 
related to a discussion about the difference between plane figures and spatial figures, 
promoted by the teacher in her mathematics classroom (the students are aged 11 to 
12). Such analysis benefited from a variation of the ‘graph-theoretical model for the 
structure of an argument’ developed by Strom, Kemeny, Lehrer and Forman (2001) 
to integrate those two above-mentioning meanings of the concept of tacit knowledge 
with other important element of Polanyi’s theory: the three areas or domains – 
ineffable, intermediary and sophistication – in which the relation between thought 
and speech varies from one extreme: tacit prevailing over the explicit, to another: 
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tacit and explicit falling apart, moving through an intermediary level: tacit 
corresponding to the meaning of speech (Polanyi, 1962, p.87).  This integration 
allowed us not only to investigate the types of knowledge – mainly explicit or mainly 
tacit – the students used in a ‘psychological way’ to perform the task of elaborating 
an understanding of the difference between plane and spatial figures, but mainly how 
much the projection of those types of knowledge on the task were manifest tacitly or 
formalized by the students. Some results of the research are presented.  

DEVELOPMENT AND METHODOLOGY 

Initially, the students were asked to elaborate and present their understanding in 
writing (this was considered as task 1). To this end, they had to observe a classifying 
table – flat, plane, volumeless forms versus spatial forms that can have a volume – 
proposed in their textbook. This table had solely pictures. After some time, the 
teacher conducted a conversation about the students’ understanding of the difference 
between plane and spatial figures. When the conversation began, some students 
manifested difficulty in putting their understandings in writing. So, the teacher let 
them elaborate such understandings orally in real time (this was considered as task 2).  

The episode lasted for twenty minutes and was recorded on tapes, which were 
transcribed entirely. After examining the data categories were established to account 
for: 1) students’ knowledge used in a subsidiary way to perform and control of the 
task, 2) students’ internal articulation that preceded their utterances, 3) the teacher’s 
interventions, 4) two other non-fully observable processes: concentration 
(observation of the classifying table by students) and shifting of focus (not 
recognition of some knowledge as instruments by the students). Below I illustrate the 
categories. 

1. Students’ tacit knowledge (related to the task in question) 

C1: Surfaces 

Example: “…in some figures there are some flat forms that make a figure with a 
volume. Example, the cylinder has two faces with the form of a circle, the prism has 
two faces of one hexagon and two faces of a rectangle.” (task 1) 

C2: Capacity 

Example: “The difference between the flat, the plan and without volume and the spatial 
figures that can have a volume is that the flat ones cannot hold material inside and the 
ones which have volume can hold material inside. ” (task 1) 

C3: Width 

Example: “This one is hollow inside and this one is not hollow inside”. (task 1) 

C4: Rigid movement 

Example: “…if you take one of these triangles and take it from the paper page it will 
be just like the page; you turn it and it is all the same. Now, this one will be like a 
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pencil, you turn it and it shows other angles of vision. I think that’s the main 
difference.” (task 2) 

C5: Bending 

Example: “We put here that the figures without volume do not stand and the spatial 
figures do.” (task 1) 

C6: Tangible reality 

Example: “This ones (referring to spatial figures) are real things and those ones are 
papers (referring to plan figures)”. (task 2) 

C7: Meta-cognition 

Example: “Ah, I more or less understood what some of them are”. (task 2) 

The words or expressions in bold in those utterances indicate our identification of the 
clues the students gave about the knowledge they were using in a subsidiary way to 
elaborate an understanding of the difference between plane and spatial figures. The 
categories were named according to this knowledge. This does not mean that the 
students were conscious of having that knowledge or even that some of those types of 
knowledge stood as formalized mathematical knowledge. Also we do not state 
affirmatively what the origin of that knowledge was: school instruction, informal 
acquisition through daily life experience, or germinal mathematical ideas. We have 
interpreted the above-mentioned knowledge C1, C2,…,C6 as mathematical because 
they were used tacitly or instrumentally for a mathematics task. Besides, it is possible 
that in the future that knowledge can be formalized mathematically allowing the 
students to take them as mathematical knowledge.  

Task 1 in parenthesis indicates that the student was reading what he/she wrote. Task 
2 in parenthesis indicates that the student was elaborating his/her understanding in 
real time.  

2. Students’ internal articulation of the understandings produced  

E1: Priority of tacit - identified with Polanyi’s ineffable domain of co-operation 
between tacit (personal) and explicit (formal). E1 indicates an internal articulation, 
which was not projected in speech or else was projected vaguely and not precisely. 
Examples of utterances that we have interpreted as resulting from E1: 

“It’s the word that doesn’t come out”. (task 1)  

“It’s like a piece of paper, you turn it that’s all it has”. (task 2) 

E2: Tacit on the borderline with the explicit. E2 indicates an internal articulation 
which was progressively projected in speech in such a way that the tacit seemed to be 
close to the explicit. Example: 

“Look here, all the spatial forms that have volume give an example of being real. And to 
be real (some hesitation) look at a prism, for example, of a hexagon. You connect a 
hexagon to another with rectangles you have a prism”. (task 2) 
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E3: Tacit coincides with explicit - identified with Polanyi’s intermediary domain of 
co-operation between tacit and explicit. E3 indicates an internal articulation, which 
was fully, and exactly projected in speech. Example: 

“We put here that the figures without volume do not stand and the spatial figures do”. 
(task 1) 

E4: Explicit separate from tacit - identified with Polanyi’s sophistication domain of 
co-operation between tacit and explicit. E4 indicates an internal articulation which 
was not reflected in speech. In this case, although the speech was confident and with 
no hesitation, it was incoherent or contradictory. Example: 

“The forms without volume can only be seen in one way, they are plane and flat. The 
forms with volume can be seen in many ways, almost all of them are solid and have a 
volume”. (task 1) 

E5: Explicit under check. E5 indicates an internal articulation, which results from the 
students mobilizing his/her meta-cognition. The student performed the task but 
doubted the relation between his/her internal articulation and its external 
representation. Examples: 

“I wrote here, but I don’t know if it is correct”. (task 1)  

“What is this?! The hexagon has the surface that has the base for, the base?!” (task 1) 

Those categories were built in the following way: from the original records and their 
transcriptions we searched for students’ utterances excerpts, which could be 
interpreted as a result of their modus operandi. On the other hand, each internal 
articulation identified would be preceded by the mobilization of specific tacit 
knowledge, which made up students’ understandings.  

3. Teacher’s interventions 

I1: Commands 

Example: “Now, you all must observe the classifying table for some time and then write 
the difference between …” 

I2: Guiding the speeches 

Example: “And you Peter, what about the difference between…?” 

I3: Explaining 

Example: “This doesn’t have to be right, it is your perception.” 

I4: Demanding explanation 

Example: “What do you mean by…?” 

I5: Posing question 

Example: “There is more to it. Can’t you see anything else?” 

I6: Listening 

Example: “Go on” 
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The teacher’s mental actions were not examined in this research to avoid more risk of 
interpretation and because the focus of the analysis was the students’ learning 
processes.  

4. Two other non-fully observable processes 

O: Concentration, which corresponds to the students’ observation of the classifying 
table, and SF: Shifting of focus, which corresponds to an interruption of the students’ 
performance due to an unfamiliar feeling with the instruments that they or their 
classmates had used to complete the task. 

THE GRAPHIC REPRESENTATION OF THE DATA 

Once those groups of categories were constructed, we divided the episode into five 
segments where each of them was represented by a graph (e.g, graph 1 corresponds to 
segment 1, and so on). The idea of the graphs came from the work by Strom et al 
(2001), and was intended to exhibit the tacit-explicit dynamic of the episode.  

In each graph (refer to table 1 as an example of all graphs) the categories were 
disposed in a circle and oriented flows were drawn to represent the dynamic among 
such categories (or the structure of the actions produced during the event). From each 
graph the episode was, then, re-analyzed.  

Continuous flows (straight lines) represent the observable aspects of the episode: the 
students’ and the teacher’s utterances. Interrupted flows (dotted lines) represent non-
observable aspects. For example, in the graph 1, the continuous flow number 11, 
which departs from I2 toward C7 corresponds to an utterance of the teacher 
(observable aspect) to a student, and resulting from an intervention of the type I2: 
Guiding the speech.  This teacher’s utterance, in its turn, provoked in that student or 
in another student the mobilization of his/her tacit knowledge of the type C7. The 
next flow – number 12 – in dotted line, indicates that the student attributed meaning 
to and integrated such knowledge (non-observable aspect) producing an internal 
articulation about his/her understanding of the difference between plane and spatial 
figures, which was not projected in his/her utterance or was projected vaguely and 
non-precisely (in the former, although the student had produced an utterance it did 
not project any clue about his/her understanding of the difference between plane and 
spatial figures). This utterance (observable aspect) was then originated from E1 and 
was represented by the flow number 13 in straight line.  

The darker flows correspond to the students’ actions in relation to task 1. For 
example, the flow number 34, which departs from E3 toward MF, corresponds to a 
student’s utterance resulting from his/her articulation of the type E3: an internal 
articulation that was fully and exactly projected in his utterance, and answering the 
task 1. The orientation of that flow shows that this utterance provoked in him/her or 
in another student a shifting of focus. Following, the flow number 35 indicates that 
such a shifting of focus led a student to produce an articulation of the type E5, that is, 
an internal articulation that put the explicit under check. The utterance resulting from 
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this articulation was represented by the flow number 36. All of this related to the task 
1. On the other hand, the lighter flows correspond to: (a) the students’ actions in 
relation to task 2 (for example, the flow number 44 that departs from C2 toward E3, 
and the flow 45 that departs from E3 toward I6); (b) the teacher’s utterances (for 
example, the flow number 18 that departs from I6 towards C7). 

Table 1: Graph 1 

The numbers given to the flows correspond to the chronological sequence of the 
episode in the record’s transcription or to the chronological sequence of the meanings 
produced along the event.  

From the observation of the behavior of the flows in each graph, we tried to 
understand the characteristics of the corresponding segment. When we perceived 
some regularity or some interesting behavior of the flows (as for example, great 
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concentration of flows in some specific category), we turned to the record or to its 
transcription to interpret them.  

We would like to observe that students’ tacit knowledge about width (C3), rigid 
movement (C4), bending (C5) and tangible reality (C6) were not identified in 
segment 1 of the episode. The same can be said in relation to the internal articulation 
E2, and teacher’s intervention of the type I3. That is the reason that we do not find 
flows departing from those categories. They were identified in subsequent segments 
whose graphs, due to lack of space, will not presented in this report. 

The two main differences between Strom et al’s graphs and the graphs in the above- 
mentioned analysis are: (a) more distance between the observable and non- 
observable aspects of our categories than in theirs: our inferences were of a higher 
order, in the sense that they demanded more interpretative effort and riskier 
evaluation; (b) the flows of our analysis, except number 10, represent more than the 
chronological sequence of the meanings produced along the event: they correspond 
precisely to the students’ and the teacher’s utterances. 

FINAL COMMENTS 

Concerning the mathematical task under investigation, the methodology 
demonstrated: (a) the students’ knowledge used in a subsidiary way; (b) how the tacit 
co-operated with the explicit in the projection of that knowledge on the task; (c) 
evidence of the concentration process (indwelling, Polanyi, 1983) shifting of focus 
and detailing of the particulars of tacit knowledge (Polanyi, 1962, 1983); (d) that, 
among the various types of tacit knowledge used by the students to accomplish their 
tasks are the mainly explicit and mainly tacit components of Ernest’s (1998b) model 
of mathematical knowledge.  

More precisely, the following components of the model identified were: (1) 
knowledge related to surfaces of solids: prism, cylinder, hexagon and rectangle, for 
example, which are included in the mainly explicit component ‘statements and 
propositions’; (2) ontological concept of plane and spatial figures, which is included 
in the mainly tacit component ‘meta-mathematics views’; (3) aspects of oral 
language, which is a mainly tacit component. 

An interesting result that emerged from the analysis is related to the perspective of 
cognition not necessarily restrict and coincident with language, but seen as a situated 
social practice, moving between the poles of the tacit – effective action – and the 
explicit – intersubjective projection of such an action – dimensions. The analysis 
suggested that student’s answer to an oral task may be apparently mistaken under the 
viewpoint of the discipline. This does not necessarily mean that he/she does not know 
the correct answer, or else that he/she had not interiorized certain types of 
knowledge. The presumed mistake or non-interiorization may indicate that, when 
uttering his/her understanding, the student could be operating either in the ineffable 
(E1) or in the sophistication domain (E4). If in the former, his/her tacit knowledge 
was still under construction and therefore predominant over the explicit. This results 
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in a type of ‘painful’ utterance, which provides vague clues, thus not enough for us to 
identify the student’s understanding. If in the latter, the tacit functioning of the 
student’s thinking could have been blocked due to some speech ineptitude: the 
student’s symbolic operations seemed not yet ready to express his/her understanding. 
As a result, his/her utterance is filled with imprecision or contradiction, although 
produced confidently and with no hesitation.  

Exercising her sensibility to understand the student’s modus operandi through the 
categories proposed in this analysis can help the teacher identify which stage of 
learning – tacit prevailing over the explicit, tacit on the borderline of the explicit, tacit 
and explicit coinciding or tacit and explicit independent – the student is in. 
Depending on the stage identified, the teacher can create pedagogical supports to 
promote practices of conversation to help students align, as much as possible, their 
internal articulation to the domain in which the tacit and the explicit coincide. This is 
fundamental in the processes of formalization and social communication of the 
student’s mathematical knowledge.  

Acknowledgements: I am grateful to Oto Borges and Stephen Lerman for helpful 
conversations.  
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TRACKING PRIMARY STUDENTS’ UNDERSTANDING OF THE 
EQUALITY SIGN 

Viktor Freiman          Lesley Lee 
           Université de Moncton   Université du Québec à Montréal
Recent curricular reforms are following the lead of the Standards 2000 and, in 
diverse ways, integrating some algebraic work into primary school mathematics. Our 
research aims at producing a tool that will allow researchers to track the 
development of algebraic thinking in children as they progress through various 
primary programs. In this paper we will illustrate how we have proceeded and what 
we have learned in our exploration of one small but widely recognized element of 
algebraic thinking, a rich understanding of the equal sign. An analysis of 
questionnaires administered to a kindergarten, a grade three and a grade six class in 
a Montreal area school allows us to present a wide range of student errors and to 
suggest some key questions for tracking students’ thinking and for comparing them 
across curricula. 

INTRODUCTION
Over a decade of research into students’ understanding of introductory algebra (Hart, 
1981; Booth, 1984, 1988; Wheeler & Lee, 1987; Kieran, 1992; etc.) confirmed what 
was already popularly recognized1: algebra constitutes a major obstacle for a 
significant number of middle and high school learners. There have been a large 
number of responses to this problem which have mainly centered on reforming the 
teaching of high school algebra: problem solving approaches, strengthening 
arithmetic skills, slowing down the introduction of algebra, various technological 
approaches. One response—by a growing group of researchers and considered 
unthinkable two decades ago2—has recently found expression in a large number of 
curricular reforms in North America. The American Standards 2000 has enshrined 
the response of the early introduction of algebra by creating an “algebra strand” 
running in parallel to the traditional arithmetic and geometry from kindergarten 
onwards.
Many primary curriculum reforms have followed suit. In Quebec3, where the primary 
reform is now in its third year of implementation, the development of algebraic 
thinking is present as an aim though always hidden. The proposed high school 
curriculum admits that the student has already been introduced to algebra in primary 
                                          
1 This opacity of algebra found expression in jokes and phrases such as the French “C’est de 
l’algèbre” [It’s algebra] for the English phrase “It’s Greek to me”. 
2 In 1984, an ICME-5 working group softened its name from “Algebra in Elementary School” to 
“Algebraic thinking in the early grades” because, as Davis (1985) expressed it, some participants 
“were opposed to the whole idea” (p. 198). 
3 The Quebec reform, which is much more timid in its recommendations concerning algebra, 
appears to have been inspired by the 1989 Standards and the 1994 Vision of Algebra document. 



www.manaraa.com

2–416  PME28 – 2004

school but “à son insu” [without his being aware of it]. The Canadian Atlantic 
provinces are much more explicit about the inclusion of algebra in their K-8 
curricular agreement of the year 2000. The document, Mathematics Learning Results
(Education Foundation of the Atlantic provinces, 2000), mentions algebra in the 
formulation of all four of its didactic learning principles and puts “patterns and 
relationships” as one of the four content domains.4

The task of creating appropriate didactical tools for the teaching of algebra in the 
early grades—textbooks, inservice and preservice teacher training programs, 
evaluation tools—has barely begun. NCTM has suggested a few classroom activities 
in its Navigating through algebra (2001) series. Carpenter, Franke and Levi (2003) 
have recently produced a textbook for use in teacher training, Thinking
mathematically: Integrating arithmetic and algebra in elementary school. An 
analysis of reform textbooks in Quebec indicates that most all but bypass the 
algebraic goal5.
Our research falls within the “evaluation tools” category; it aims at tracking students’ 
algebraic thinking throughout primary school. This tool, intended chiefly for 
researchers, will allow us to compare various primary school programs—those that 
aim at the introduction of algebraic thinking to varying degrees, those that build 
algebra on arithmetic, those that develop algebra independently or in relation to the 
entire curriculum and those that begin school with algebra and build arithmetic on a 
basis of algebra6—and to trace the development of algebraic thought in individual 
students as they move through the grades within these programs. 
In this paper, we will look at one small but widely recognized element of algebraic 
thinking, the concept of equality and the related understanding of the equal sign, as 
an example of the construction and use of this instrument. Many researchers have 
concluded that one of the requirements of the passage into algebra is a much richer 
understanding of the equal sign than that which is provided by traditional arithmetic 
and most traditional algebra curricula deal with this early on or relegate it to what 
they call pre-algebra.7

                                          
4 The others are: number and operations, shapes and space, data analysis and probability. 
5 Indeed, students in the master’s program at the Université du Québec à Montréal, concluded that it 
would be entirely conceivable that a classroom teacher might not even notice the new algebraic 
aim, so well is it hidden in the curriculum and textbooks. The one textbook series (Défi 
Mathématiques) for primary school that went furthest in developing algebraic thinking before the 
reform, has scaled back the algebraic component, apparently to meet the acceptance requirements of 
the ministry! 
6 The Hawaiian “Measure Up” program is currently adapting and testing the Russian Elkonin-
Davydov curriculum in two of its schools. Children begin by comparing and operating on quantities 
before number is introduced. Thus algebraic thinking precedes arithmetic. 
7 In Quebec, for example, the equal sign has been studied in the first year of high school in what is 
called a “preparation for algebra”.
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STUDIES OF EQUALITY 
The NCTM Standards (2000) consider “equality is an important algebraic concept 
that students must encounter and begin to understand in the lower grades” (p. 94). 
This recognition of the importance of the equality concept is based on decades of 
research from Ginsburg (1977) to Falkner, Levi & Carpenter (1999) and, even more 
recently, Theis (2003) who did his doctoral research on the learning and teaching of 
equality in the early grades. One of the findings that have stood the test of time and 
constituted the basis for the reform programs are that children have a “do something” 
or operational view of the equal sign rather than a relational one (Behr, Erlwanger & 
Nichols (1980), Kieran (1981)). A second, and very important finding, is that this 
unhelpful view of the equal sign does not sort itself out over time or with 
mathematical maturation. In a study of primary school children, “performance did not 
improve with age” and “in fact, in this sample, results for the sixth grade students 
were actually slightly worse than the results for students in the earlier grades” 
(Carpenter et al., 2003, p. 9). Kieran (1981), who looked at understanding across 
primary, secondary and university students, suggested that understanding of the equal 
sign did not necessarily improve beyond primary and may be responsible for a 
number of errors in secondary and post-secondary mathematics.  
A third finding concerning the equal sign—less discussed in the literature but of 
interest to us for reasons that will soon become evident—was noticed and remarked 
upon by Ginsburg (1977). He saw how children link the equal sign to the operation 
and cannot envisage the one without the other.8 Behr et al. (1980) made a similar 
observation in their research: “There is a strong tendency among all of the children to 
view the = symbol as being acceptable in a sentence only when one (or more) 
operation signs (+, -, etc.) precede it” (p. 15). Rather than interpreting the equal sign 
as a “do something” signal, it is possible that children perceive + = as a single 
operator symbol where the + indicates the type of operation to be performed. 

OUR RESEARCH 
Context
In the spring of 2003, we began exploring a number of “early algebra” themes in 
kindergarten (35 students, ages 5-6), two grade three classes (20 and 11 students, 
ages 8-9) and a grade six class (23 students, ages 11-12) in a French Montreal area 
private primary school with a math enrichment program for all students. Our study of 
children’s understanding of the equality sign involved from two to three hours of 
video-taped classroom time with each group. We began each class with a full group 
discussion eliciting reactions to a number of statements involving the number 8 such 
as 8 = 8, 8 = 3 + 5, 3 + 5 = 4 + 4. Students were then asked to complete a two-page 
questionnaire that involved filling in the missing numbers in statements of the form 
                                          
8 For example, children find 3 + 5 and 3 = 3 unacceptable statements. They will insert an equal sign 
in the first (3 + 5 = ) and an addition sign in the latter (such as 0 + 3 = 3). 
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a = a, c = a + b, a = b + c, a + b = c + d where one of a, b, c or d was missing (a box 
or a blank) and the numbers involved in the statements were grade appropriate.9 In 
the kindergarten class, a second one-hour session a few weeks later allowed us to 
repeat the activity using concrete material. The full group discussion involved 
numbers of candies in small opaque boxes rather than numbers on the board. The 
questionnaire made the link with the boxes of candy through representations of the 
various shaped boxes sometimes with small circles to represent the candies 
(Smarties) and sometimes with numbers. 
Results
Few errors occurred in problem types a = a and a + b = c. The tables below 
summarize the errors which occurred in problems of the form c = a + b (Table 1a) 
and problems of the form a + b = c + d (Tables 1b and 1c). 

Grade Problem Reflect 
number 

Sum(not difference) Difference 

K _ = 4 + 3 4 = 4 + 3  1 = 4 + 3 

Gr. 3 _ = 45 + 50 45 = 45+50  5 = 45 + 50 

Gr. 6 _ = 6500 + 500   6000 = 6500 + 500

K 7 = _  + 1  7 = 8 + 1  

Gr. 3 67 = _  +  67 

67 = _  +  50 

67 = 67 + 67

67 = 67 + 50 

Gr. 6 67000 = _  + 50  67000 = 67050 + 50  

K 7 = 7 + _ 

7 = 5 + _ 

7 = 7 + 7

7 = 5 + 7

7 = 7 + 14

7 = 5 + 12

Gr. 3 67 = 5 + _ 

67 = 67 + _ 

 67 = 5 + 72

67 = 67 + 134

Gr. 6 67000 = 5 + _ 

67000 = 67000 + _ 

 67000 = 5 + 67005

67000 = 67000 + 134000

Table 1a: Errors in problems of the form c = a + b 
Here we see that children’s errors involved 1) reflecting a given number to the other 
side of the equal sign as in a = a + b, c = c + b or c = a + c, 2) inserting the sum of the 
two given numbers in the blank independently of the position of the unknown, and 3) 

                                          
9 Single digit numbers were used in kindergarten, double digit in grade 3 and up to 5 digits in grade 
6.
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inserting the difference of the two given numbers in the blank. When three numbers 
are given and a fourth to be found as in a + b = c + d, behavior was a little more 
complex. In Table 1b we see that when the blank was in the c position, for example, 
some children behaved as if d were not there and simply entered the sum of a and b. 
Others appeared to ignore the a and “complete the sum” b = c + d while others simply 
repeated one of the terms a, b, or d in the blank.  

Grade Problem Direct sum Complete the sum Repeat one of terms 
K 2 + 4=_ + 5 

4 + 8=_ + 5 
3 + 5=_ + 8 

2 + 4 = 6 + 5 
4 + 8 = 12 + 5 
3 + 5 = 8 + 8 

4 + 8 = 3 + 5 
2 + 4 = 4 + 5 

3 + 5 = 3 + 8 
Gr. 3 4 + 8=_ + 5 4 + 8 = 12 + 5 4 + 8 = 3 + 5  

Gr. 6 4 + 8=_ + 5  4 + 8 = 3 + 5  

K 3 + 5 =2 + _   3 + 5 = 2 + 3
3 + 5 = 2 + 5

Gr. 3 36 + 54 =52 +_   36 +54 = 52 + 36
36 +54 = 52 + 54

Gr. 6 36000 + 54000 
= 52000 + _ 

  36000 + 54000 = 
52000 + 36000

K 2 + _ = 2 + 5 
2 + _ = 5 + 2 

2 + 7 =2 + 5 
2 + 7 = 5 + 2 

2 + 0 = 2 + 5 
2 + 3 = 5 + 2 

2 + 2 = 2 + 5 

Gr. 3 25 +_= 25 + 45 
25 +_ = 45 + 25 

 25 + 0 = 25 + 45  

Table 1b: Errors in problems of the form a + b = c + d 

Three additional errors were also revealed: filling the blank with the sum of all the 
given terms (K) and filling the blank with either the sum (Gr. 3) or the difference (Gr. 
6) of two of the terms (see Table 1c). 
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Grade Sum of all terms Partial sum Difference of some terms 
K 2 + 4=11 + 5 

4 + 8 = 17 + 5 
3 + 5 = 2 + 10
2 + 9 = 2 + 5 

Gr. 3  36 + 54 = 52 + 88 25 + 20 = 45 + 25 
Gr. 6   36000 + 54000 = 52000 + 16000

36000 + 54000 = 52000 + 18000

Table 1c: Errors in problems of the form a + b = c + d (particular cases) 
Analysis of results 
The aim of our study is to create an instrument to track algebraic thinking across 
many different primary curricula and a wide range of students. We are therefore 
interested in finding the best ways of eliciting this thinking. Using this particular tool 
of a written questionnaire to look at children’s understanding of the equal sign, the 
focus of our attention is on finding which of the given problems are the most 
revealing of children’s thinking and of its evolution over time. Before discussing that 
particular question, we will briefly discuss two unexpected but ultimately fruitful 
results that confirm the need for the instrument we are creating. 
If, as the literature suggests, children all have difficulty with the equal sign and 
appear to regress in their understanding over primary school, then there would be no 
point in conducting this study or in modifying curricula to deal with this problem. 
The hope is that an early introduction of equality will change this portrait. Although 
we did not intend to compare our students with others described in the research, we 
did include, in all four questionnaires, one very fruitful question that was used by 
Falkner et al. (1999) in their study across the grades: 8 + 4 = __ + 5. The table below 
shows the percentage of students getting the correct answer of 7 in the two studies.

Falkner & al. study Freiman & Lee study 
Grades % getting answer 7 % getting answer 7 Grades 
1 and 2 5 3 K 
3 and 4 9 77 3 
5 and 6 2 86 6 

Table 2: Comparison of results of students on the question 8 + 4 = __ + 5
Although our kindergarten students were comparable with those in the Falkner study, 
by grades three and six our students were greatly outperforming their American 
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counterparts and were drastically improving with grade level.10 Neither study 
involved children who were exposed to primary curricula aimed at developing 
algebraic thinking. Our students, though they represented a full spectrum of abilities, 
did have one major curricular advantage: they were exposed, for several hours a 
week, to a math enrichment program. Thus it seems that a written questionnaire could 
be helpful in comparing understanding of the equal sign in different curricula as well 
as among students following the same curriculum. 
This brings us to the question as to what are the most fruitful questions on the equal 
sign to be included in a questionnaire on algebraic thinking.11 Among the less fruitful 
questions are those for which the majority of students were successful. Although 
statements in the form a + b = c did produce some incorrect answers, from 91 to 
100% of students per class were successful. The statement a = a only produced errors 
in the kindergarten class where nevertheless 25 of the 33 students responded 
correctly. A third category of less useful questions has nothing to do with question 
form and more to do with the choice of appropriate numbers for the grade six class. 
Our use of multi-digit numbers in some of these questions elicited student errors that 
had little to do with their understanding of the equality symbol and a lot to do with 
their inability to operate on large numbers. For example, the question 67000 = 5 + __ 
elicited nine different erroneous responses ranging from 65995 to 68995. Indeed the 
majority of errors in grade 6 could be attributed to errors in addition and subtraction.  
The questions that discriminated the most among our students are candidates for a 
future more global questionnaire. Two problem types—both involving a blank in the 
last position—caused consistent difficulties across the grades: c = a + _ and a + b = c 
+ _. Three problem types caused difficulties across two grade levels: _ =  a + b and  a 
+ b = _ + d (K and Gr. 3),  a = _ + b (Gr. 3 and Gr. 6 where math errors in 67000 = _ 
+ 50 accounted for most of the difficulty). Thus, by order of importance in a short list 
of problems to include in a written test instrument across the grades, we would 
suggest: a + b = c + _, a + b = _ + d, c = a + _, a + b = _ + d. 
We experimented in grades 3 and 6 with problems having two or more blanks such 
as:  _ + a = _ + b, a + _ = e = _ + d, _ + _ + b =  _ + a, and a + _ + a = b + _. Of these 
problems, a + _ + a = b + _ caused some difficulties at both grade levels. More 
testing is needed of these forms before we can make a decision as to their usefulness.  
Future research 
We have not discussed here the video taped whole class sessions where the children’s 
comments were quite revealing of their thinking. Nor have we had time to discuss the 
                                          
10 Two of Lee’s students (Ouellet & Tremblay) took this question into grades 7 and 8 of a French 
public school in a different area of the city and, though the results were inferior (ranging from 60 to 
66% in the three grade 7 classes and from 74 to 82% in the two grade 8 classes), they were still 
significantly superior to the Falkner results and did improve from grade 7 to 8. 
11 We are assuming here that a questionnaire on algebraic thinking will cover many other concepts 
besides equality and will necessarily be of limited length. 
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kindergarten children’s work using the concrete materials and compare that with the 
results reported here. We are also planning some interviews to further explore some 
aspects of children’s thinking about equality and the equal sign.  
A number of other elements of algebraic thinking have also been explored and these 
will be the subjects of future papers. We have learned a number of lessons in our 
exploration of algebraic thinking so far and these will be applied to our study of other 
relevant themes until the research tool for tracking algebraic thinking across primary 
school is ready for testing in a variety of contexts. 
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LEVELS OF STUDENT RESPONSES
IN A SPREADSHEET-BASED ENVIRONMENT 
Michal Tabach             Alex Friedlander

Department of Science Teaching, The Weizmann Institute of Science, Israel 

The purpose of this report is to investigate the range of student responses 
in three domains - hypothesizing, organizing data, and algebraic 
generalization of patterns during their work on a spreadsheet-based 
activity. In a wider context, we attempted to investigate students' utilization 
schemes of spreadsheets in their learning of introductory algebra. Twenty 
students' responses to an investigative assignment were analyzed.  The 
findings indicate a wide range of student responses.  In each of the three 
domains analyzed, most student responses fell into several clearly definable 
categories.  However, an attempt to establish a hierarchy of performance 
levels led to less clear results.

Background 
Researchers and educators suggest using various models of learning environments, 
that widen and enrich the scope of learning processes for students having differing 
mathematical abilities.  Technological tools were recognized as a particularly 
effective means to achieve this purpose (see for example, Balacheff & Kaput, 1996). 
The Compu-Math learning project created a technologically based learning 
environment, which systematically covers the entire mathematics syllabus for grades 
7-9.  As described by Hershkowitz and her colleagues (2002), this project is based on 
the following principles: 
o Investigation of open problem situations; 
o Work in small heterogeneous groups, where the problem is investigated and 

discussed;
o Consolidation of the mathematical concepts and processes, that arose in group 

work, in a whole-class discussion; 
o Investigations that utilize computerized tools to facilitate operations within and 

between various mathematical representations, to reduce the load of formal 
algorithmic work, to enable the construction of mathematical concepts and 
processes, to provide feedback to hypotheses and solution strategies, and to 
resolve a real need to explain important processes and products; 

o Interactions between students in a group or in the class as a whole, between 
students and computerized tools, and between students and the teacher; 

o Reflective actions on the learning process; 
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This report investigates the range of student responses in three domains: (1) 
hypothesizing, (2) organizing data, and (3) algebraic generalization of patterns during 
students' work in a spreadsheet based activity.  The findings address the broader issue 
of detecting the learning processes underlying introductory algebra students' 
instrumental genesis (Mariotti, 2002).  Here we attempted to describe and discuss the 
processes involving students' perception and utilization of spreadsheets as a 
technological artifact. 
Our choice of domains was guided by their importance in the process of learning 
mathematics in general, and in the context of spreadsheet-based learning of 
introductory algebra in particular, and also by their potential to characterize and 
possibly indicate levels of mathematical learning.  The importance of each of the 
three investigated domains was considered by others on various occasions: 
- Chazan and Houde (1989) and Howe and his colleagues (2000) indicate that 

students’ hypothesizing has the potential to be a source of authentic mathematical 
activity, a catalyst for meta-cognitive action, and a motivator for learning. 

- Student performance at the stage of collection and organization of data was 
investigated in particular in the domain of data analysis (Ben Zvi & Garfield, in 
press) and spreadsheet-based mathematical activities. 

- Algebraic generalization of patterns is considered central for the learning of algebra 
on the one hand, and as a source of student cognitive difficulties on the other hand 
(Kieran, 1992). 

Methodology
One of the authors (M. T.) was the teacher-researcher of a Grade 7 introductory 
algebra class consisting of 24 students.  For this particular group, all five weekly 
lessons were conducted in a computer laboratory; students had access to a computer, 
and occasionally used Excel spreadsheets as tools for mathematical work and 
documentation.  In Grades 5 and 6, the students were also occasionally engaged in 
exploratory mathematical activities that employed Excel spreadsheets.  During 
selected lessons, the teacher conducted both video and audio recordings.  The video 
recordings included the class work of one pair of students and discussions involving 
the entire class.  The audiotapes recorded the discussions of 3-4 additional pairs of 
students.  In addition, all the students were required to save their computer work on 
the net.  The data analyzed in this report is based on the data collected during one 90-
minute lesson.  The data include transcriptions of the video recording of one pair, the 
audio recordings of four pairs, and 12 spreadsheet files of all students.  Twenty 
students attended this lesson, and worked in 6 pairs, one group of three, and 5 
individuals.  The lesson analyzed here was based on an activity called Growing
Rectangles, and was conducted at an early stage of the course – three weeks after the 
beginning of the school year. 
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The activity of Growing Rectangles
The situation associated with the problem (Figure 1) presents the process of growth 
of three rectangles; students are requested to relate to the first ten years of this 
process.

Rectangle A Rectangle B Rectangle C

    .     .     . 

                      . . . 

. . .

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is always longer 
than its width by three units. 

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is constantly 10 
units.

At the end of the first year, 
its width is one unit, and it 
grows by an additional 
unit each year. 

The length of this 
rectangle is always twice 
the length of its width. 

At what stages of the first ten years does the area of one rectangle overtake another’s area? 

      Figure 1.  Problem situation of the Growing Rectangles.
At the initial stage, the students are required to predict (hypothesize), without 
performing any calculations or formal mathematical operations, which rectangle will 
overtake another's area, and at what stage. 
Next, the students are required to organize their data regarding the growing rectangles 
in a spreadsheet table, record the formulas used to construct their table, and compare 
(first numerically and then graphically) their findings and their predictions. 
Student responses 
Next, we will attempt to present and analyze some categories of student responses to 
this activity.  As previously mentioned, we will restrict our analysis here to three 
domains: hypothesizing, organizing data, and algebraic generalization of patterns. 
Hypothesizing (predicting results).  In this domain, we observed three categories of 
responses.
oLocal considerations. Most students sampled one or more points on the time 

sequence and drew conclusions according to their findings in these selected points.  
For example, two pairs chose to look at the fifth year (probably because of its being 
the midpoint of the given period of ten years) and realized that at this point, the 
areas of Rectangles B and C are equal.  This led them to conclude that these 
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rectangles become equal in area every five years.  They rejected this hypothesis at a 
later stage. 

oConsiderations of rate.  A few students considered the rectangles’ rate of growth.  
One pair reasoned as follows:  Rectangle B has a fixed length, and as a result, it 
cannot “win”.  Between Rectangles A and C, Rectangle C is the “winner”, since at 
each step “it grows by itself”. 

oEliminating the common variable.  One pair noticed that one side of each rectangle 
is the same at each stage and grows similarly.  As a result, they ignored the 
contribution of this side to the area, and considered only the growth process of the 
other side.  The comparison of the three corresponding sequences of lengths 
(Rectangle A - 4, 5, 6, …;  Rectangle B - 10, 10, 10, …;  Rectangle C – 2, 4, 6, …) 
led them to conclude that Rectangle C will have the largest area at the end of the process. 

Ben Zvi and Arcavi (2001) found that student analyses that are based exclusively on 
local considerations lead to poorer results, as compared to an argumentation that is 
based on global, or combined global and local considerations.  Thus, we considered 
the first category of hypothesizing to be at a lower level, in comparison to the other 
two.  We could not develop an argument with regard to the comparison of the other 
two categories.  They are both global and based on general features of a variation 
process.  One should note, however, the elegant simplicity of the third strategy. 
Organization of data.  In this activity, the students were required to use Excel in 
order to collect, organize, and analyze their data.  However, they were not instructed 
how to organize their data.  Figure 2 presents the four categories of tables observed in 
the students' work files and their corresponding frequencies. 
oSeparate tables.  Students in this category constructed three tables - one table for 

each rectangle (Figure 2a).  Each table contained four columns to describe the year 
(from 1 to 10), the rectangle’s two linear dimensions, and its corresponding area. 

oExtended table (Figure 2b).  The tables of this category contained ten columns (i.e. 
variables): the year, six columns for the linear dimensions of each rectangle, and 
three columns for the area measures.  The columns were in order either by 
rectangle (i.e. an annexation of the three separate tables previously described) or by 
variable (i.e. first, grouping together the linear dimensions of all rectangles and then, 
their area measures). 

oReduced table (Figure 2c).  These students allotted only one column for the width 
measures, since they are identical for all three rectangles.  Thus, the number of 
columns in these tables was reduced to eight. 

oMinimal table (Figure 2d).  These students noticed that the width measures are 
identical to the year number and omitted the width measures altogether.  Moreover, 
they omitted the length measures as well, and included their corresponding 
expressions directly into the area formulas of each rectangle.  Thus, the number of 
columns in this case was further reduced to four. 
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Rect. A Width Length Area Rect. B Width Length Area Rect. C Width Length Area
1 1 4 4 1 1 10 10 1 1 2 2
2 2 5 10 2 2 10 20 2 2 4 8
3 3 6 18 3 3 10 30 3 3 6 18
4 4 7 28 4 4 10 40 4 4 8 32
5 5 8 40 5 5 10 50 5 5 10 50
6 6 9 54 6 6 10 60 6 6 12 72
7 7 10 70 7 7 10 70 7 7 14 98
8 8 11 88 8 8 10 80 8 8 16 128
9 9 12 108 9 9 10 90 9 9 18 162
10 10 13 130 10 10 10 100 10 10 20 200

Year
Width 
Rect. A

Length 
Rect. A

Area
Rect. A

Width 
Rect. B

Length 
Rect. B

Area
Rect. B

Width 
Rect. C

Length 
Rect. C

Area
Rect. C

1 1 4 4 1 10 10 1 2 2
2 2 5 10 2 10 20 2 4 8
3 3 6 18 3 10 30 3 6 18
4 4 7 28 4 10 40 4 8 32
5 5 8 40 5 10 50 5 10 50
6 6 9 54 6 10 60 6 12 72
7 7 10 70 7 10 70 7 14 98
8 8 11 88 8 10 80 8 16 128
9 9 12 108 9 10 90 9 18 162
10 10 13 130 10 10 100 10 20 200

Year Width 
Length 
Rect. A

Area 
Rect. A

Length 
Rect. B

Area 
Rect. B

Length 
Rect. C

Area 
Rect. C

1 1 4 4 10 10 2 2
2 2 5 10 10 20 4 8
3 3 6 18 10 30 6 18
4 4 7 28 10 40 8 32
5 5 8 40 10 50 10 50
6 6 9 54 10 60 12 72
7 7 10 70 10 70 14 98
8 8 11 88 10 80 16 128
9 9 12 108 10 90 18 162
10 10 13 130 10 100 20 200

Year
Area 

Rect. A
Area 

Rect. B
Area 

Rect. C
1 4 10 2
2 10 20 8
3 18 30 18
4 28 40 32
5 40 50 50
6 54 60 72
7 70 70 98
8 88 80 128
9 108 90 162
10 130 100 200

(a) Separate tables (2 files) 

(b) Extended table (4 files) 

(c) Reduced table 
     (2 files) 

(d) Minimal table (4 files) 

Figure 2. Categories (and frequencies) of tables observed in student Excel work files.
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First, a distinction can be made between the construction of separate tables and the 
other categories.  Students who employed the first strategy did not consider the 
common features of the three rectangles and the task at hand.  A numerical or 
graphical comparison of several processes of variation requires either a common 
table or a common graph.  An analysis of the other three table categories led us to 
conclude that an increasing level of conciseness is related to higher level of 
reasoning.  As indicated by the findings presented in the next section, the 
construction of a compact table is related to the abilities to detect patterns and to 
express symbolically the relationships involved in this particular problem situation. 

Algebraic generalization of patterns.  Hershkowitz and her colleagues (2002) 
indicate that the use of spreadsheets to investigate processes of variation enables 
students to use spontaneously algebraic expressions. Spreadsheet users employ 
formulas (expressed in spreadsheet syntax) as a natural means to construct extensive 
numerical tables and then, possibly to plot graphs.  In our case, after three weeks of 
learning algebra, all students, with one exception, were able to write and then copy 
(“drag”) spreadsheet formulas, to obtain the necessary numerical data.  We 
investigated whether the formulas used by the students in this case have the potential 
to indicate levels of student ability to generalize algebraically.  After examining 
students’ work in this activity, we formulated the following categories: 
oOne student exclusively used numbers and showed no attempt to generalize, but 

was still able to construct a graph based on his numerical data. 
oRecursive formulas express a relationship between two consecutive numbers in a 

sequence.  Figure 3(b) presents an example of using recursive expressions for 
obtaining the dimensions of a rectangle. 

oExplicit formulas use the sequence place index as an independent variable.  In our 
case, 3 students (in 3 files) used the year number as an independent variable in their 
expressions (see Figure 3(a)). 

A B C D
1 Year Width Length Area 
2 1 =A2 =A2+3 =A2*(A2+3) 

(a) Explicit formulas. 

A B C D
1 Year Width Length Area 
2 1 4 1 =A2*B2 
3 =A2+1 =B2+1 =C2+1 =A3*B3 

(b) Mixed recursive and 
multivariate 
formulas. 

A B C D
1 Year Width Length Area 
2 1 =A2 =A2+3 =B2*C2 

(c) Mixed explicit and 
multivariate formulas. 

         Figure 3.  Algebraic generalizations. 
oMultivariate formulas use more than one variable to express a generality.  In our 

case, in 8 (out of 12) files the area of the rectangles was expressed by using the 
letters corresponding to the length, width or year columns (e.g., = B2*C2).  The 
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variables used in a multivariate formula were originally obtained by a recursive 
method or by an explicit formula (see Figures 3(b) and (c)). 

Recursive formulas can be considered to be the result of a local view of a pattern.  In 
standard algebra, recursive formulas are less effective as a tool for finding a required 
number in a sequence, or for analyzing and justifying sequence properties.  In a 
spreadsheet environment, these disadvantages are less valid and hence less obvious 
to students (or researchers).  The spreadsheets’ dragging ability allows us to obtain a 
very large quantity of numbers by using any kind of formula – including a recursive 
or a multivariate one.  Moreover, the same action of dragging enables students to 
understand the global aspects of a recursive formula.  Recursive formulas have a 
didactical advantage as well.  For example, they are easier to understand and 
produce, and sometimes their use is the only way that some complex (for example, 
exponential) functions can be introduced at an early stage. 
Multivariate formulas are also frequently considered an obstacle to students’ 
performance in algebra.  Lee (1996) states that one of the main difficulties in 
algebraic modeling is not the construction of a general expression, but the finding of 
a model that proves to be effective in the solution process.  Once again, the difficulty 
of producing an ineffective model is bypassed by the spreadsheets’ ability to accept 
and handle a considerably wider range of generalizations than with a paper-and-
pencil environment.  In a spreadsheet environment, students frequently replace a 
quantity previously expressed as an algebraic expression by a new variable.  Jensen 
and Wagner (1981) consider students’ ability to view expressions as entities a 
characteristic of algebraic expert thinking.  The contribution of this strategy to 
advance this skill needs further inquiry. 
Summary
Our analysis of student responses in this spreadsheet activity revealed a wide range 
of student responses.  Because of the variety of student responses detected in our 
findings, we concluded that a spreadsheet-based learning environment enables 
students to follow different paths of instrumental genesis, according to their algebraic 
reasoning and their perception of the employed artifact. 
In addition, we attempted to create categories of responses with regard to students’ 
ability to hypothesize, to organize data and to generalize.  In each of these three 
domains, most student responses could be categorized in several distinctive groups.  
However, an attempt to distinguish levels of performance among these categories led 
us to less clear results.  In our case, the process of hypothesizing did not require the 
employed technological tool.  As a result, we established levels of performance by an 
analysis of student mathematical reasoning. 
The activity presented here required students to organize large quantities of 
numerical data.  Spreadsheets are particularly well-suited to facilitate the 
construction of tables.  Our findings indicate that this feature enables students of all 
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levels to organize their data.  Moreover, we distinguished various levels of 
performance in this domain, based on students’ level of mathematical understanding of the task. 
With regard to students’ algebraic generalizations, we found that the spreadsheets’ 
powerful mathematical capabilities enable students to obtain the required results by 
employing strategies that are considered ineffective in a paper-and–pencil 
environment.  As a result, we could not establish a hierarchy of generalization skills 
that would be valid for both environments.  We also recommend that the effect of 
work with spreadsheets on students’ ability to generalize algebraically in both 
environments be investigated. 
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SENSITIVITY FOR THE COMPLEXITY OF PROBLEM 
ORIENTED MATHEMATICS INSTRUCTION – A CHALLENGE 

TO TEACHER EDUCATION 
Torsten Fritzlar

Teacher training college Jena (Germany) 

Teaching can be understood as acting and deciding in a complex system. On that 
problem oriented mathematics instruction (POMI) can be characterized as very high 
complex particularly regarding to mathematical-cognitive aspects. To cope with re-
sulting demands in the long run, the teacher has to be sensitive for this complexity. 
But what does this mean? How can you get some clues for one’s degree of sensitivity 
for complexity of POMI? Is it possible to sensitize teachers or teacher students for 
this complexity? 

POMI AS A HIGH COMPLEX SYSTEM 
Requests for a stronger problem orientation in mathematics instruction (e.g. NCTM 
2000) has been raised worldwide for a long time. However, international investiga-
tions indicated a quite resistance of reality of mathematics instruction particularly to 
this requests. There are different reasons for this and many constraints are often 
quoted by teachers (e.g. Zimmermann 1991). In my opinion one reason are additional 
demands of POMI on the teacher concerning mathematical aspects and in particular 
designing and implementing a corresponding lesson plan. 
In didactic, pedagogic and psychological literature teaching is very often described as 
a complex system (e.g. Arends 1997, Bromme 1992, Clark & Peterson 1986, Davis & 
Simmt 2003, Kießwetter 1994, Lambert, Loewenberg Ball 1998, Leinhardt, Greeno 
1986; Fritzlar 2004 for more references). This view should be specified. A possible 
and suitable specification can be found in topical research work of cognitive psy-
chologists (e.g. Dörner, Kreuzig, Reither & Stäudel 1983, see also Frensch & Funke 
1995). They depict systems or embedded problems on several dimensions, and ele-
mentary and complex systems or problems are on the opposite ends of the scales. 
Partially based on the initial research work of the German psychologist Dörner the 
dimensions “comprehensiveness”, “connectivity”, “dynamic” and “low transparency” 
are often used (e.g. Kotkamp 1999):  
Comprehensiveness: This dimension represents the quantity of information to be 
considered for an appropriate work on the problem. Therefore the extent of compre-
hensiveness also depends on the particular agent and his model of the situation. If the 
quantity of information goes beyond the processing capacity of the agent, he must try 
to reduce comprehensiveness (in an appropriate way). 
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Connectivity: This dimension represents the amount of change of system elements on 
account of modification of other elements. It describes, how close connected the sys-
tem is. Because of the connectivity of a system, an agent cannot do one thing without 
many others. That’s why he has to consider side and long term effects of his deci-
sions too. 
Dynamic: This dimension represents to what extent system elements change without 
intervention from outside. Dynamic systems do not wait for the agent, and so he often 
feels time pressure. In addition in dynamic systems an agent has not only to consider 
the present state, but its development in time too. 
Low transparency: This dimension represents to what extent states of the system, its 
elements and connections between them can be observed. If necessary the agent has 
to complement his knowledge through active information gathering. 
So complex systems can be characterized as comprehensive, close connected, high 
dynamic and hardly transparent systems, and there is absolutely no doubt that teach-
ing is complex in this sense. 
POMI is complex like conventional instruction in regard to the so called “classroom 
management” (Doyle 1986). But beyond this it is characterized by an additional high 
complexity concerning math-cognitive aspects: Several, partly different nevertheless 
coinciding problem solving processes of pupils appear during a lesson, which should 
be watched and supported by the teacher if necessary. This processes are influenced 
by numerous anthropogenic or socio-cultural conditions and especially by own, 
sometimes inconspicuous teaching-decisions in many ways. So a huge network of 
interactions between conditions, decisions and features of the lesson emerges, which 
can hardly be overlooked. From there unexpected matters occur very often and the 
teacher has to free oneself of or at least question own views. In addition, these proc-
esses are high dynamic, normally a teacher has only few seconds to find a suitable 
reaction. So he cannot take into account all available information or exhaust his 
whole knowledge. Teaching orientated to independent problem solving processes is 
very low transparent because the teacher cannot look into pupils’ minds. In addition 
he is no longer the only (and authoritarian) source of information and he has to give 
the pupils more scope for doing mathematics. So in some ways POMI can hardly be 
under control or be planned. 

POSSIBLE CONCLUSIONS 
Complexity of teaching outlined above may be hardly disputed, but in my opinion it 
is considered too little or not the right way in teacher education. Especially complex-
ity of POMI ought to be made a subject of discussion also in math teacher education 
at university, and – as a first step – educators ought to try to sensitize teacher students 
in this direction. (In this way teacher education could also make a further contribution 
to a stronger problem orientation of mathematics instruction.) 
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But to my knowledge no experiences concerning such orientation of teacher educa-
tion exist. From there groundwork has to be done first!  
Important conditions for a corresponding supplementation of teacher education are 
- some information about students’ initial situation regarding sensitivity for com-

plexity, and 
- possibilities to evaluate new elements of education to what extent they can help 

sensitize teacher students in this direction. 
So within my research I created a diagnostic instrument and tested in a first explor-
ative study, to what extent it can provide clues for the degree of sensitivity of teacher 
students for the complexity of math-cognitive aspects of POMI. For this I designate 
(in sense of a provisional definition for working) an agent as sensitive in this regard, 
if he is aware of the complexity of POMI, of special demands arising from it and of 
limits of his possibilities to decide and to act in an appropriate way. 
Main element of the created diagnostic instrument is an interactive realistic computer 
scenario, which models selected aspects of the complexity with an appropriate exam-
ple. In the following I want to report some details about the subject of the scenario, 
its important features, about the explorative study and main results. 

AN ATTEMPT TO ANALYZE SENSITIVITY FOR COMPLEXITY 
A mathematical problem – the “Faltproblem” 
Subject of the computer scenario is the use of the following problem in a math les-
son:

The Faltproblem (folding paper-problem): A sheet of usual rectangular typing paper 
is halved by folding it parallel to the shorter edge. The resulting double sheet can be 
halved again by folding parallel to the shorter edge and so on. 
After n foldings the corners of the resulting stack of paper sheets are cut off. By 
opening the paper, it will be detectable that (for n>1) a mat with holes has resulted. 
Find out and explain a connection between the number n of foldings and the number 
A(n) of folding-cutting-operations.1

Teachers, students and the author tried out this problem in about 50 lessons mainly in 
fourth and fifth grades of different school types. This experiences showed special po-
tentials of the Faltproblem for POMI, which can only be listed here: the problem can 
be understood very easily (also by young pupils), nevertheless it is not at all mathe-
matical simple; many possibilities to come to terms allow a differentiated work on 
the problem; very often pupils can evolve presumptions, search for explanations and, 
more generally, work heuristically; the problem is a motivating challenge for pupils, 

                                          
1 Used formulation of the problem and goal of working on are intended for the teacher. This prob-
lem was developed by Kießwetter (e.g. Kießwetter & Nolte 1996) to use in an entrance examination 
of the university of Hamburg. 
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generally they enjoy working on it; there are many possibilities for communication 
and cooperation; the problem is open in regard to ways and also to goals of working 
on; it has many points of contact to several mathematical subject areas and other 
mathematical problems; and many variations and extensions are possible.2

But the use of these potentials leads to a higher complexity and to additional demands 
on the teacher like outlined above. 

The computer scenario 
By analyzing the lessons about the Faltproblem I collected important aspects of the 
underlying network of conditions, decisions and features of pupils’ problem solving 
processes. Based on this, on interviews of students, teachers and teacher educators 
and on theoretical literature I created a descriptive model and implemented it in an 
interactive computer scenario, which confronts the user with decision-situations con-
nected to the use of the Faltproblem in a fifth grade’s lesson. In this scenario the 
Faltproblem can be virtually taught in three different classes. For that the user takes 
the part of the teacher. At first he can decide about the lesson goals and how to begin 
the work on the problem. Then the scenario models some possible and probable reac-
tions of the pupils, especially their working processes, ideas and results, and the user 
has to react again. But he can also go back and correct his former decisions or give 
some additional alternatives for reaction.3 At the end of the lesson the user is told an 
assessment of his decisions particularly with regard to his lesson goals. From here he 
can also go back to former decision-situations or start again. (The figure on the next 
page illustrates these possibilities of interaction with the scenario.) 
The scenario makes it possible for the user to vary his decisions systematically in the 
same class or to check effects of his decisions in different classes. So he can explore 
a large number of possible and probable lesson courses. Especially in this combina-
tion of realism, interactivity and the intimated possibilities of investigating the sce-
nario I see its potentials regarding to the research goals: 
- By realistic modeling of appropriate decision-situations through the scenario 

some special demands of POMI on the teacher can be simulated. 
- A scenario gives a chance to sufficient complex modeling with concentrating on 

very important but often more or less ignored math-cognitive aspects. 
- A scenario enables an interactive investigation. In this way arises a complex net-

work of decision-situations comparable to real teaching. 
- Decision-situations can be explored repeatedly (as often as the user want) and 

without time pressure. In addition for the user it doesn’t make any difference, if 

                                          
2 For more details see FRITZLAR (2004). I want express my thanks to all pupils, students, teachers 
and school administrators involved in the investigations. 
3 The scenario cannot react on alternatives given by users. But they were automatically collected 
and can be used for further development of the scenario. 
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he is able to execute his plans. (This could be important specially for teaching 
novices.) Altogether a scenario can model decision-situations realistically, and it 
enables ways of analysis of these situations, which do not exist in reality but 
whose use can provide some clues for the degree of sensitivity for complexity. 

- Modeled situations can be varied systematically. By this the user can experience 
complexity of teaching in a special way and the teacher educator can analyze his 
examination of this complexity. 

- As many students as wanted can work with the scenario, and it can be handled in 
an easy way. 

choice of a class
statistical data, pupils’ abilities, experiences concerning 

working on problems, collaborative working, ...

choice / prioritization of lesson goals
short-term goals (regarding the problem working on), 

long-term goals (regarding heuristic competences, attitudes, ...) 

decisions during the lesson
presentation of the problem, questions and instructions to the pupils, 

used materials and media, ... 
Given alternatives can be chosen or supplemented.

reactions regarding lesson situations, pupils’ 
problem solving processes and results

pupils’ activities, presumptions, argumentations, (approximate) assessment 
concerning pupils’ motivation, involvement, …

assessment of the lesson 
comparison between achieved and planned goals, assessments concerning 

consistence of decisions, extent of control by the teacher, 
comprehensiveness of mathematical doing, ... 

Figure 1: Work on the computer scenario 

An explorative study 
Within an explorative study I investigated how teacher students work with the sce-
nario (without extensive instructions) to get some clues for their degree of sensitivity 
for complexity. Therefore I needed some indications for sensitivity, which could only 
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be partially deduced from preliminary theoretical considerations. On account of the 
innovative character of the study I had to get indications from empirical data (charac-
teristic features of students’ investigation of the scenario) too. Based on these I cre-
ated a fourdimensional “sensitivity for complexity (sfc) – vector”, which describes 
the investigation of the scenario by the user and with it gives some clues for his de-
gree of sensitivity for complexity. The “sfc – vector” has the following components: 
Exploratory behavior: A sensitive agent is expected to try to get to know an un-
known system, to come off own conceptions, to scrutinize and to correct own deci-
sions if necessary. Therefore the exploratory behavior of the user can indicate to his 
degree of sensitivity for complexity, and consequently this component represents 
quantitative aspects (number of loops and jumps back within the program) and quali-
tative aspects (e.g. number of different modes of representation the problem) of ex-
ploring the scenario by the user.4
Context sensitivity: A sensitive agent is expected to analyze modeled situations in a 
detailed manner and to check offered alternatives for possible (side and long-term) 
effects. He is expected to consider (detailed modeled) math-cognitive aspects in par-
ticular, because these are so very important for POMI. Consequently this component 
represents to what extent the user referred in decision-situations to problem solving 
processes of pupils, aspects of the mathematical content, or more social aspects (mo-
tivation, teaching methods, …) of the lesson. 
Inconsistence: A sensitive agent is expected to react consistently with modeled fea-
tures of the lesson and (linked to them) his previous decisions. Consequently this 
component represents the percentage of decisions of the user, which are interpreted to 
be not consistent with modeled aspects of the lesson, particularly with features of pu-
pils’ problem solving processes.
Reflectivity: A sensitive agent is expected to try to create an appropriate mental 
model of connections between different aspects of the lesson. He is expected to ques-
tion the quality of modeling by the computer program, to create additional alterna-
tives in decision-situations if necessary and to reflect own decisions and his decision 
behavior. Consequently this component represents the degree of (critical) reflectivity 
on a rating scale.5For more details of the empirical investigation and its results I have 
to refer to Fritzlar (2004). For a first impression I want to indicate main results and 
give as examples coarsened results of two “extreme” experimental subjects of the 
study:
- Differentiated clues for the degree of sensitivity for complexity can be gained by 

analyzing the investigation of the scenario. 
- There are no objections against the independence of the components of the “sfc-

vector”.
- I could not find specific sensitivity types in the experimental group. 

                                          
4 Of course quantitative and qualitative aspects are not completely independent from each other. 
5 The scale is related to the relative differences between the subjects in this respect. 



www.manaraa.com

PME28 – 2004  2–437

- Most of the involved students had only a low degree of sensitivity for complexity 
(regarding to the sfc-components). Generally the scenario was not much explored 
by the students. Possibilities for systematic testing of teaching-decisions also on 
different conditions were hardly used. The scenario focuses on math-cognitive 
aspects of POMI. This was realized by many students, nevertheless features of 
pupils’ problem solving processes were considered only superficially and to a 
very small extent. Reflectivity of the scenario investigation was low in general. 
Users hardly reflected on connections between conditions of and decisions during 
the lesson and pupils’ problem solving processes. Also from there arose only few 
motives for exploration. Multidimensionality of numerous decisions was rarely 
taken into account, meta-cognition was hardly perceptible. 

exploratory behavior context sensitivity inconsistence

no statements 
possible6

reflectivity

Figure 2: Coarsened results of two teacher students 
The study presented here is new in regard to used methods and research goals. That’s 
why I consider it appropriate to work exploratively and related to a concrete example. 
For several parts of the study almost inevitably arise limits and beginnings for im-
provements and supplementations. But beyond this the reported computer scenario 
could also be suitable to contribute to sensitize math teacher students for the com-
plexity of POMI. For this I see the following possible potentials of the scenario: 
- The program models selected parts of the network of interaction composed from 

conditions of the lesson, decisions during the lesson and features of pupils’ prob-
lem solving processes and connected aspects. It can be easily handled and inves-
tigated by the user on his own. 

                                          
6 The student worked on too few decision-situations.
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- Unavoidable reductions were made in view of my goal to enable experiencing 
specific aspects of the complexity of POMI by working on the program. 

- The scenario enables ways of investigation, which do not exist in reality but al-
low conclusions about it. So it allows experiences, which could hardly or only te-
diously be gathered otherwise. 

- The scenario could widen the “horizon of learning” by confronting the user with 
possible effects of his decisions directly, hardly delayed and in time-lapse. 

- Working on the program could encourage the user to critical reflection of mod-
eled structures and processes, among others in regard to a possible transferability 
to real situations. 
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ICT TOOLS AND STUDENTS’ COMPETENCE DEVELOPMENT 
Anne Berit Fuglestad

 Agder University College 

ABSTRACT
In this paper I will present the rationale that motivates the study in an ongoing three-year 
project following students in school years 8 to 10. The aim is to develop the students’ 
competence with use of ICT tools in mathematics in such a way that they will be able to 
choose tools for themselves, not rely just on the teacher telling them what to use for a 
specific task. Experiences and results from research emerging after more than two years 
will be discussed.

BACKGROUND AND AIM  
Based on a constructivist view of learning, the curriculum guidelines for Norway 
(KUF, 1999), state as an aim that students should develop their knowledge and 
understanding of the subjects, and independence and self-reliance in their learning. 
The students should be stimulated to find solutions by explorative, experimental 
activities, be encouraged to ask questions and investigate different representations 
and present arguments during their work. Tools like a spreadsheet, a graph plotter and 
calculators are explicitly mentioned in the curriculum. We find similar 
recommendations in the NCTM Principles and Standards for school mathematics 
(NCTM, 2000) and other curriculum plans. 
The aims stated in the curriculum guidelines form the background for an ongoing 
project over three years with students in school years 8 to 10. The students should 
develop their competence and self-reliance to choose suitable computer tools, not just 
rely on a teacher telling them what to use for a specific task. The students should 
learn when and when not to use computer tools, and which ICT tools to use.
The research aims to investigate how students develop their knowledge of the 
software tools and ability to judge choice of tools and to what extent, if at all, it is 
possible to achieve the goals in the curriculum guidelines. In this paper I will present 
the rationale and basic ideas for the project and outline the way we work to achieve 
our goals including illustrative experiences from classroom practice.  

TOOLS FOR MATHEMATICAL TASKS 
By ICT tools, or computer tools, in our project, we think of software that makes it 
possible to use computers to perform tasks that are planned and decided by the user. 
This means software that is open and flexible, not limited to pre-designed tasks. With 
such open-ended software tools we can provide learning situations where the students 
can experiment with mathematical connections, find patterns and be stimulated to 
develop mathematical concepts and understanding. These can be utilised both to learn 
mathematics, to learn to use and to choose appropriate ICT tools for problem solving.  
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Different kinds of technologies and tools have been used for centuries in 
mathematics. We can think of tools for measurement, calculations, mathematical 
notation, symbol systems and written language; cognitive technologies that helps 
transcend the limitations of the mind (Pea,1987). Computer software is an especially 
powerful cognitive technology for learning mathematics. This can take the form of an 
amplifier, which means doing more efficiently the same as before without changing 
its basic structure. Pea and Dörfler argue we should regard ICT tools as reorganisers. 
This have wide implications for the objects we work on, in our case mathematical 
objects, and lead to more activity on a meta level with more emphasis on planning 
and judging methods (Pea,1987; Dörfler,1993). ICT tools will be a part of the 
cognitive system: computer visualisations will extend and expand the students’ 
cognition and should be available at any time. This has implications for the kind of 
software that we chose as tools in mathematics classrooms. Suitable software give 
opportunity to develop conceptual fluency, provide an environment for exploration 
and investigation, integrate different representations and stimulate reflection 
(Hershkowitz et al., 2002).
The CompuMath project which provides long time experience on the use of tools in 
curriculum development (Hershkowitz et al., 2002), in addition, emphasises the 
potential of the tool to support mathematization by students working on problem 
situations and the communicative power of the tool. All the criteria are closely related 
to the multi-representational nature of the tools, which make it possible to do 
manipulations of objects and transformations between different representations.
What would then be appropriate tools to use for the students in years 8 to 10 in 
schools? We think of tools that have more than one kind of use, tools that could be 
applicable to different content areas, and could be easily available. This means we 
would look for the generality of the tools, not software produced to cover specific 
limited areas in the curriculum. A spreadsheet is a good example of such a tool; it is 
easily available, can be used in many contexts and has become a standard tool in 
many working places. It can be used to store and analyse data, create number patterns 
and sequences by general rules and present data graphically.
In the project we use a spreadsheet, Excel, a graph plotter, Grafbox, and dynamic 
geometry, Cabri. These tools all have the sufficient openness and flexibility to give 
opportunities for experiments and explorations, which we see as important in 
developing mathematical concepts according to a constructivist based environment. 
We also included the use of Internet resources, mainly thinking of collecting 
information and data to use when that is appropriate. 

THE ICT COMPETENCE PROJECT AND METHODOLOGY 
Three schools with six teachers and six classes participate in the project with me as 
researcher. The project leaders, a teacher and I, provide some ideas and material for 
use in classes, both new and existing material. Software tools, experiences and new 
ideas have been discussed in project meetings every term. The teachers are 
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responsible for what and how they implement material in their classes. To some 
extent the teachers also develop their own material, like prepare spreadsheet models 
for tasks, and make them available for the rest of the project group.
The schools were selected because we knew they had some experience using 
computers in mathematics classroom before. But still, some teachers had limited 
experience and few ideas how to use computer tools in open tasks and admitted they 
had to learn from others. The project also provides a good opportunity for this. 
The activities in the project classes were integrated in the ordinary lessons, and the 
mathematics teachers are responsible for planning activities.  
The project builds on constructivist and social constructivist views of learning and 
the methodology of the project has aspects of action research and developmental 
research. Development of teaching ideas for use of the software and support for 
teachers’ competence development was important to support the research and give 
opportunities to study students’ competence development. The research focus implies 
use of qualitative methods of data collection.
I and a research student visit classes during their work on computers acting as a 
participating observer and helping teacher. We write field notes and record with 
audiotape. The teachers write shorts reports from their use of ICT in classes, 
including what tasks they used and short comments. Students’ material in written and 
on computer files are collected. This material are analysed and compared with 
observations. In the last part of the project we plan a period of close observation of 
students’ work and interviews with some students of different ability, using audio or 
videotape. A questionnaire will be given to all students.
As part of the project we investigate methods of analysing the data and categorise 
outcome concerning students’ competence in stages as described in next section. The 
final evaluation will take place after this paper is written, but some experiences and 
results can be reported here. 

STAGES IN DEVELOPMENT OF COMPETENCE 
It is necessary to learn some basic features of the software tools. Insight in what is 
possible and some fluency with the tools is necessary for students to be able to judge 
what to use. We need to build this competence over time, and not just leave it to the 
last part of the students’ education. Based on our work in classrooms and recent 
literature, I, in consultation with the teachers, have designed a developmental 
framework in three stages.
1. Basic knowledge of the software tools. The students can utilise the functionalities 

of the software to solve simple tasks prepared for it, when they are told what 
software to use. For example this could be to make formulas in a spreadsheet 
when the main outline of the task is given or to use a graph plotter to plot a 
function when the formula is given.  
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2. Develop simple models. The students can make the layout of text, numbers and 
formulas to plan a model for a spreadsheet. For a graph plotter they could judge 
what functions to draw, use different scales on axis, zoom in or out. Be able to use 
dynamic geometry to make constructions that can resist dragging, i.e. the figure do 
not fall apart when parts of it, points or line segments, are moved.  

3. Judge the use of tools for a given problem. The students should be able to think of 
different ways and means for solving a problem, which software is most 
appropriate to use or when other methods are better.

Development of mathematical competence is involved in all stages. In preparing a 
formula on a spreadsheet, students gain experiences expressing mathematical 
connections and further experiments often require use of variables or parameters. In 
order to develop models or drag resistant geometrical constructions, they have to 
analyse the situation and build a model according to mathematical rules. The use of 
computer tools gives the students access to ways of expressing their mathematical 
models and experimenting with them. 
In order to develop their competence the students need experience with different 
kinds of models and modes of using the software. A variety of applications that use 
similar patterns can help to form general models for using the software. For example, 
on a spreadsheet, many problems can be solved using a model similar to a shopping 
list, the “shopping list model”. Another is the “number pattern model”: number 
sequences that can be adjusted using fixed reference to a parameter that is important 
in the model, and experiment with this. Some basic techniques are necessary, and 
experience from several applications will help to generalise and build knowledge of 
models.  
Introduction of new tools changes the teaching and learning situation. We can not just 
introduce a new tool and expect everything to be the same (Pea, 1987; Dörfler, 1993). 
Good use of the tools implies change in teaching and working style and in the tasks 
presented to the students. In the next section I will discuss teaching principles we 
developed and intend to use in the project together with some results.  

TEACHING STRATEGIES AND EXPERIENCES 
In order to develop competence to choose suitable computer tools, some main points 
should be emphasised in a teaching strategy. These emerge from analysis of data in 
the project and from other research dealing with ICT and students’ work 
experimenting and exploring with mathematical connections.
Motivation. A scrutiny of the data analysis suggests that motivation is a crucial point 
for the students to engage in a problem. We have seen variation in from students’ 
engagement in tasks that they need to see there is a problem of interest. Challenges 
appear more interesting than routine and tasks with easy solutions. Cognitive 
conflicting situations and surprising results can be utilised in this connection 
(Fuglestad, 1998). I observed several times, when students made a figure using Cabri, 
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and tested by dragging, they had surprises and were challenged to further 
experiments. There were a lot of discussions and sharing of ideas among students of 
how to solve the problems. Generally, I observed that many students at the start were 
motivated to use computers, but this only lasted if the tasks involved also were 
interesting to them. In a study by Hölzl (2001), presenting an open task, with 
opportunities for experiments and less obvious answers, the students became strongly 
involved in investigations. I often observe similar activity with children’s learning to 
use mobile phones with text messages. The high motivation stimulate them overcome 
the technical difficulties.
Basic features and step by step. It is necessary to know basic features of the 
software in order to utilise tools. These can be taught in connection with interesting 
tasks. Our experiences supports the idea to build knowledge from the simple models, 
step by step without jumping to more sophisticated solutions before the students have 
experience to understand. For example instead of building a formula with several 
operations, we have introduced more columns in a spreadsheet to tackle the 
challenge. Interesting problems can be faced even with limited facilities of the 
software. We need tasks designed to cover the most common models used for 
example in a spreadsheet, and the most common properties of geometrical 
constructions in dynamic geometry.  
The topic of some lessons was economics, calculations of salary and taxes. The teacher 
prepared a file to load into Excel with the framework given and necessary information 
about the rules for calculations. The students’ task was to understand the rules and 
complete the model by putting in the correct formulas. The tasks aimed at giving some 
experience using a model and making formulas on a spreadsheet, learning how to use a 
spreadsheet, and in this way covering parts of necessary basics of a spreadsheet. At first 
is seemed that most students worked well and some of them were able to make the 
formulas they needed. However, when I observed closer and discussed with some 
students, I discovered that the model was complicated and they needed help to develop 
the formulas. The main problem was that more than one operation was necessary in 
order to prepare the formula in a given cell. I would suggest giving more intermediate 
steps in some calculations. The model itself seemed to be more complicated than using 
the spreadsheet for these students. The task also revealed that some students had 
problems of understanding how to calculate percentages and proportions of an amount. 
Similar experiences were observed in other lessons and in my previous research and 
support the teaching strategy of building form simple models step by step.  
Same problem, different tools and methods. Different tools can be used for a 
problem and different methods using the same tool gives the opportunity to judge and 
discuss what would be a good solution. In this way students can learn about the 
suitability of different tools or consider the alternative using just paper and pencil. 
From an analysis of computer files from students’ work on Cabri, I found very 
different solutions to make the same figure. The students were requested to write a 
description of their methods, so we could understand their thoughts. We also 
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observed that students engaged a lot in discussions about their solutions and shared 
ideas. Using different tools for the same problems have been less explored in the 
project, but some ideas were developed.
Limited knowledge concerning students’ choice of tools is perhaps due to the fact 
that the tasks are often presented together with the representations and tools that 
should be employed (Friedlander & Stein, 2001). This seems to be the case in many 
classrooms, and can be confirmed by looking into school textbooks, official 
examination tasks and other material. Different methods supplement each other and 
show a variety of models and representations of the concepts. Students own questions 
gave good starting points for problems to explore, with computer software as a 
powerful tool to make sense of information and examine different approaches to 
problems (Moreno-Armella & Santos Trigo, 2001). In their study a problem posed by 
a student, was solved in three different ways using computer tools, and later 
discussed in the class.  
Themes and open tasks. We have used open tasks that could be interpreted and 
solved in different ways with different tools to give the students the option to choose 
and try out different tools.  
With EURO in the pocket, planning a journey was the theme of work in several 
lessons in two classes. The students had to plan a journey through five countries in 
Europe, with a commission to accomplish, but with no specific tasks. They had to set 
the tasks like to convert between currencies, make budgets, make travel plans using a 
map and timetables and other tasks related to their specific task description. The 
information could be found on the Internet and they could choose a spreadsheet to 
prepare tables and make calculations. Observations revealed that some students had 
problems getting started. After some lessons the teachers reported good activity, and 
were quite satisfied with the results from some of the groups. Generally the task 
appeared too open at this stage, giving limited help to get started. The students 
needed to get used to this way of working and discover the mathematics involved.  
Another class had visited a local chemical factory as part of a project work over some 
weeks. Back in class the students were given four pages with some data and 
information about the production and Internet links to resources about the factory. 
There were no questions given, just the challenges for the students to set their own 
tasks and use the data and material provided, and with encouragement explore what 
they can do with given data using computer tools. I observed their work and data files 
were collected and later analysed to look for students’ solution methods. 
I observed a good working climate and good motivation. Students made tasks on 
different levels of difficulty, with the possibility to extend the tasks for students who 
could manage. The observations revealed a variety of tasks and at different levels and 
some tasks were quite demanding. In some cases students looked at their peers to get 
ideas, and were challenged by what other students suggested. They shared their ideas 
and discussed solutions. A similar working method have been used in this class both 
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before and after, with similar experiences. In a local examination set by the class 
teacher two weeks later the students were given tasks from the same material and 
some simple geometrical figures to draw. I observed the students explained their 
work and found to a large extent they were able to explain their ideas and results. 
They also discovered their mistakes and seemed to learn from explaining their results.  
Reflection and discussion. We found that reflection and discussion are necessary in 
order consolidate and be sure the students understand the main points in question. In 
this connection students were be requested to write down their hypothesis before they 
start exploring patterns and connections and report findings and new questions. In 
work with Cabri they were requested to describe their constructions. Reflection does 
not usually occur spontaneously but have to be initiated and writing reports give good 
help in this connection (Hershkowitz et al., 2002). Drawing conclusions and revising 
the results are important to get the full value out of the work. 
Teachers’ intervention: We found in our research, although the teachers had some 
experience, they expressed they needed help to develop their competence about the 
software and of how to design teaching modules and tasks utilising ICT tools. In 
particular, an extra course was set up, and project meeting we discussed the 
implementation in classes. Developing teachers’ competence became an important 
part, and I think we need more development of this in further work. The teachers’ 
role changes with the introduction of ICT tools and their influence can be crucial at 
some critical stages in the lessons. Introduction and motivation with examples and 
challenges at the start and summary and reflection at the end is necessary, not just 
presenting the solution, but drawing on students’ work to reflect over the hypothesis 
and results (Hershkowitz et al., 2002). During the work, at some important steps, the 
teacher might intervene, ask questions and point to certain examples to try. Students 
may not discover important cases to try and in such cases an extra question or 
suggestion could be the clue to further discoveries e.g. (Fuglestad, 1998). In my 
observation and interaction with students, I often experienced there was need for just 
small hints for them to go on in their work, not to give answers but ideas how they 
could find out themselves. To develop competence to choose tools, the students need 
to have the option and challenge for that. The presentation of problems and 
representations of mathematical concepts and choice of tools have deep influence on 
students’ concept development and learning, and implications for later use of ICT 
tools (Kendal & Stacey, 2003).  During the observations and from teachers’ report, 
we had some cases where students also clearly expressed their choice or preference of 
a tool over another, but so far not many cases.

CONCLUSION
Can the kind of tasks and working methods presented here help students later to 
judge ICT tools as an option for their problem solving? If at all, to what extent is it 
possible to see that students achieve a competence to use ICT tools and decide which 
one is suitable for a particular mathematical problem. We found the description 
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giving stages in development, although fairly rough; can help to judge the results. At 
this stage, a few months before finishing their year 10, most students’ competence 
can be described like stage 2 and a few on stage 3.
From the observations so far, and teachers’ comments, there is still more to learn to 
develop students’ independence and self-reliance in these matters. In particular, in a 
new project we have to focus more teachers own competence development.  
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The main objective of this study is to investigate the role of four different modes of 
representation in mathematical problem solving (MPS), and more specifically to 
develop a model, which provides information about the effects of these 
representations in the solution procedures of one-step problems of additive 
structures. Data were collected from 1447 pupils in Grades 1, 2 and 3 of elementary 
school in Cyprus. Confirmatory factor analyses (CFA) affirmed the existence of four 
first-order representation-specific factors indicating the differential effects of each 
particular type of representation and a second-order factor representing the general 
ability to solve mathematical problems. Results provided support for the invariance 
of this structure across the three groups of pupils.
INTRODUCTION
There is strong support in the mathematics education community that students can 
grasp the meaning of mathematical concepts by experiencing multiple mathematical 
representations (e.g., Sierpinska, 1992; Lesh, Behr, & Post, 1987). Furthermore, 
Principles and Standards for School Mathematics (NCTM, 2000) include a standard 
referring exclusively to representations and stress the importance of the use of 
multiple representations in mathematics learning. The present study purports to throw 
some light about the nature and the contribution of three systems of representations, 
pictures, number line and verbal description (written text) of the problem to MPS.
THEORETICAL FRAMEWORK 
A representation is defined as any configuration of characters, images, concrete 
objects etc., that can symbolize or “represent” something else (Kaput 1985; Goldin, 
1998; DeWindt-King, & Goldin, 2003). In elementary mathematics teaching and 
curriculum design, a representation that plays an important role in the teaching of 
basic whole number operations, and generally in arithmetic, is the number line 
(Klein, Beishuisen, & Treffers, 1998). Despite the widespread use of number line 
diagrams as an aid to whole number addition and subtraction, doubts about the 
appropriateness of using them have been raised (Hart, 1981). Ernest (1985) supports 
that there can be a mismatch between students’ understanding of whole number 
addition and their understanding of the number line model of this operation. In fact,
number line constitutes a geometrical model which involves a continuous interchange 
between a geometrical and an arithmetic representation. Based on the geometric 

1This paper is based upon a research project investigating the role of representations in grades 1, 2 
and 3 of elementary school, which is supported by the Programme for the Support of Young 
Researchers, funded by the Research Promotion Foundation in Cyprus. 
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dimension, the numbers depicted in the line correspond to vectors. According to the 
arithmetic dimension, the number corresponds to a point on the line. The 
simultaneous presence of these two conceptualizations may limit the effectiveness of 
the number line and thus hinder the performance of pupils in arithmetical tasks 
(Gagatsis, Shiakalli, & Panaoura, 2003).
Although, the mental processes, and particularly the visual-spatial images, used in 
MPS or mathematics learning have received extensive research in the field of 
mathematics education (e.g., Presmeg, 1992; Gusev, & Safuanov, 2003), the role of 
pictorial representations or number line in MPS, has received much less attention.
Based on the functions that pictures serve in text processing, as proposed by Carney 
and Levin (2002) (decorative, representational, organizational, interpretational and 
transformational), the present study attempted to examine the role of two divergent 
categories of pictures, decorative and informational pictures, in MPS. Decorative 
pictures do not provide any information to the pupils for the solution of the problem, 
but simply decorate the page bearing little or no relationship to the problem context. 
Informational pictures provide information that is essential for the solution of the 
problem; the problem is based on the picture. 
What is new in this study is that, besides the effect of pictorial representations, it aims 
to provide information about the effect of the use of number line on problem solving, 
and compare these effects between each other, and with the effect of the verbal 
description of the problem. Further, as concerns the use of representations in MPS 
within the present study, we assume that a major distinction is needed, between 
auxiliary and autonomous representations. Auxiliary representations are not 
necessary for the solution of the problem but may assist the process of MPS. 
Autonomous representations have an essential role in MPS, since, through them, any 
information related to the problem can be expressed. In terms of this study, we 
theorize that the number line and the decorative picture are auxiliary representations, 
while the verbal description (written text) of the problem and the informational 
picture are autonomous representations.  
The present study focuses on one class of problems with additive structures, based on 
the classification of additive problems, proposed by Vergnaud (1995). In particular, 
we used one-step change (measure-transformation-measure) problems. We have 
included problems with positive (join situation) and negative transformation (separate 
situation) and problems with the placement of the unknown in the starting amount (a) 
and the transformation (b), that is four situations in total (2x2).  
To sum up, the purpose of the present study is to explore and compare the effects of 
decorative, informational pictures, number line and verbal description (text) of the 
problem on MPS by pupils of Grades 1, 2 and 3 and investigate how these effects 
vary in pupils of different age. The following research questions were formulated: 
First, which are the effects of the particular forms of representations (decorative 
picture, informational picture, number line and verbal description) on pupils’ MPS 
performance? Second, what are the differences between pupils of different age in 
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regard with the effect of representations on their MPS performance? It should be 
noted that the questions of the present study are beyond the mean differences and 
concern with the structure of pupils’ MPS within different modes of representations. 
METHOD
The instrument used in this study, to collect information for pupils’ MPS, involving 
different modes of representations, was a questionnaire. The questionnaire consisted 
of 16 one-step change problems with additive structures (a+b=c). The problems were 
accompanied with or represented in different representational modes. The exact 
classification of the problems included in the questionnaire and the symbolization 
used for them in terms of the analysis of the data are provided in Table 1. 

 Join situation (b>0) Separate situation (b<0) 

Type of 
representation

Placement of the 
unknown  

Placement of the 
unknown 

a b a b 
Verbal  V10 V20 V6 V17 

Decorative
picture

D16 D3 D8 D13 

Informational 
picture

I4 I14 I19 I9 

Number line L12 L7 L18 L5 

Table 1: Specification Table of the problems included in the questionnaire
The written questionnaire was administered to 1447 pupils of Grades 1, 2 and 3, from 
26 elementary schools in Cyprus (479 1st graders, 477 2nd graders and 491 3rd

graders). Pupils were ranging in age from 6.5 to 8.6 years at the time of testing. It 
should be noted that mathematics elementary books in Cyprus include many 
mathematical activities based on representations (pictures and number line). Pupils 
were instructed to use the representations, if they believed they could help them 
resolve the problems. Answers were marked as 0, 1 and 2. Each correct solution 
procedure (equation or description in words) was marked as 2, each correct answer 
without equation or explanation as 1, and each wrong answer or solution procedure as 
0. Cronbach’s alpha coefficients for the test were found to be well above commonly 
accepted levels (0.9) of reliability. 
Multiple methods of analysis were performed, using the collected data, including 
Gras implicative analysis (Gras, Peter, Briand, & Philippé, 1997) and Rasch model 
analysis. Since, however, the present study firstly aims at the articulation of a model 
explaining the effect of the different types of representations used in MPS, data 
analysis will focus on CFA. Specifically, the data was analysed by using CFA for the 
total sample and multiple-group analysis for the different groups of pupils, to explore 
the theoretical assumption that both the semantics of mathematical problems 
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(additive structures, placement of the unknown) and the different modes of 
representation involved in the problems (verbal description-text, decorative picture, 
informational picture and number line) affect MPS. One of the most widely used 
structural equation modelling (SEM) computer programs EQS (Bentler, 1995) was 
used to test the proposed models. In order to evaluate the extent to which the data fit 
the models tested, the chi-square to its degree of freedom ratio (x2/df), the 
Comparative Fit Index (CFI), and the Root Mean Square Error of Approximation 
(RMSEA) were examined. It is generally recognized that observed values for x2/df < 
2, for the CFI > .9 and for the RMSEA < .05 are needed to support model fit. Finally, 
the factor parameter estimates for the model with acceptable fit were examined to 
help interpret the models and their divergence.
RESULTS
In order to refute the assumption that MPS is influenced only by the semantics of the 
problem, a first-order model, which presumes that representation is not a factor in 
MPS, was examined within the SEM framework. This model involved one first-order 
factor, which associated all of the tasks and could be taken to stand for general ability 
of MPS. Specifically, the model hypothesized that: (a) responses to the questionnaire 
could be explained by one first-order factor representing the ability to solve one-step 
change problems with additive structures; (b) each item would have a nonzero 
loading on the factor; and (c) measurement errors would be uncorrelated. This model 
did not have a good fit to the data [x2 (98) =1210.29; CFI=.86; RMSEA=.09], and 
therefore, could not be considered appropriate for explaining the ability of MPS. 
To verify that apart from the semantics of the problem, the modes of representation 
within the problem have a major role in MPS, a second order CFA model was 
designed. Specifically, the model (see Figure 1 for a diagram of this model and Table 
1 for information about the tasks for each factor) hypothesized that: (a) responses to 
the questionnaire could be explained by four first-order factors that would stand for 
the four types of representational assistance used here, i.e., pupils’ abilities in solving 
problems represented verbally (V), as an informational picture (I), accompanied by a 
decorative picture (D), and a number line (L) respectively, and one second-order 
factor, i.e. pupils’ general ability to solve one-step change problems of additive 
structures (MPS); (b) each item would have a nonzero loading on the factor it was 
designed to measure and zero loadings on all other factors; (c) measurement errors 
would be uncorrelated (d) covariation among the four first-order factors would be 
explained fully by their regression on the second order factor. Figure 1 presents the 
results of the elaborated model, which fits the data reasonably well [x2 (94) =483.83; 
CFI=.95; RMSEA=.05], and shows the parameter estimates. By comparing the 
second order factor model with the first order factor model, a decrease of the RMSEA 
and an increase of the CFI could be identified (see Table 2). Thus, the second order 
model is considered more appropriate for interpreting the ability of MPS. 
To test for possible differences between the three age groups in the structure 
described above, multiple-group analysis was applied where the second order model 
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was fitted separately on each age group. The model was first tested under the 
assumption that the relations of observed variables to the first-order factors and of the 
four first-order factors to the second-order factor would be equal across the three age 
groups. The fit of this model, although acceptable, was not very good [x2 (32) = 
816.72; CFI=.92; RMSEA=.03]. This was due to the fact that some of the equality 
constraints were found not to hold (especially, those involving the tasks with an 
informational picture). As a result, the equality constraints were released. 
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Figure 1: The Elaborated Model for problem solving with different modes of 
representations, with Factor Loadings and Factor Correlations for all the pupils 
Releasing the constraints, a large improvement of the model fit emerged [x2 (360) = 
708.09; CFI = .95; RMSEA = .03] in comparison with the model for the whole 
sample, as shown in Table 2. In the multi-group model, the parameter estimates for 
2nd graders were higher than the estimates for 1st and 3rd graders for almost all tasks. 
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Moreover, most of the parameter estimates of the model for 1st graders were lower 
than the estimates of the model for 3rd graders. This finding indicates that the modes 
of representations involved in the problems did not influence the solution procedures 
of 3rd graders and 1st graders in the same way as the solution processes of 2nd graders. 

Model examined x2 df CFI RMSEA 
General Model with one first 

order factor 
1210.29
p=.0000

98 .86 .09 

General model with four first 
order factors and a second 

order factor 

483.83
p=.0000

94 .95 .05 

Multi-group model for 1st, 2nd

and 3rd graders 
708.09

p=.0000
360 .93 .03 

Table 2: Goodness of Fit Indices 
Based on the second order models, it is asserted that the first order factor concerning 
the informational picture is not as closely related to the second order factor as the first 
order factors involving the other types of representation. This finding suggests that 
the tasks involving informational picture require extra mental processes relative to the 
other tasks. The low percentage of pupils (18%) who accomplished a correct solution 
of the problems involving informational pictures also supports the above result. The 
high and similar loadings (.99) of the other first order factors on the second order 
factor reveal that pupils dealt with the problems in verbal form or accompanied with 
decorative pictures or number line, in a similar and consistent way. 
Implicative statistical analysis of the particular data provides support to these 
findings. In particular, the similarity diagram derived from the implicative analysis, 
which allowed for the arrangement of tasks into groups according to their 
homogeneity, contained two basic groups of problems. The group with the greatest 
similarity consisted of the problems involving informational pictures and the other 
group contained a combination of the problems with number line, decorative picture 
and in verbal form. The commonality between the results of both statistical analyses 
is justified by the distinction between auxiliary and autonomous representations, 
proposed in our study. Each of the two groups of tasks formed in the analyses 
corresponds to an autonomous representation, informational picture and text, 
respectively. The auxiliary representations, which just accompany the problems, 
function as an adjunct to the verbal description of the problem in the analyses.     
DISCUSSION  
The main purpose of this study was twofold, to test whether different forms of 
representation have an effect on MPS and to investigate its factorial structure within 
the framework of a CFA, across pupils of three different grades. The results provided 
a strong case for the role of the use of different forms of representations in 
combination with the semantics of the problems in MPS. The size of the factor 
coefficients of the proposed model indicates that the ability of pupils to solve one-
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step change problems of additive structures is highly associated with the abilities of 
solving problems in verbal form, with decorative pictures and number lines. The 
coherence and similarity in the ways pupils handled these representations within their 
solution processes implies that pupils overlooked the presence of the line or the 
picture and gave attention only to the text of the problem. This kind of behaviour 
towards number line can be attributed to the difficulties caused by the mismatch of 
the conception of number within the context of the problem, as a quantity of items, 
and the dual conception of number within the framework of the number line, as a 
vector and as a point (Gagatsis et al., 2003). As regards the decorative picture, the 
particular finding is in line with Carney and Levin’ s (2002) view that decorative 
pictures do not enhance any understanding or application to the text.
As concerns the function of informational pictures in MPS, from the results of this 
study, it is evidenced that it differs significantly from the use of other forms of 
representation in MPS. It was clear that pupils dealt less flexibly with problems 
involving informational pictures. This indicates that the cognitive demands of the 
informational picture in the context of mathematical problems are different from the 
other forms of representations (examined in the present study). These results support 
Miller’s (2000) conclusions that each representational system has its own 
regularities. Therefore, the results concerning informational pictures and number 
lines suggest that both kinds of representations need special attention within the 
context of MPS during instruction. The above findings are in accord with Stylianou’s 
(2001) conclusions that students do not have adequate training associated with the 
use of visual representations and lack the particular skill.
The stability of the models for the different age groups (1st, 2nd and 3rd graders) 
provides support for the existence of the same structure of pupils’ MPS involving the 
representational modes explored in this study. However, some differences emerged 
between the models, as regards the strength of the relationships between the tasks and 
the factors. An explanation for the 1st graders’ lower estimates is that they have not 
yet developed the mental abilities needed for dealing consistently with the particular 
forms of representation in problem solving. The decrease of the strength of the 
relations between the general factors and some of the specialized factors for 3rd

graders in comparison with 2nd graders indicates that with development, the 
functioning of the specialized factors becomes less dependent on general abilities. 
Thus, 3rd graders used the particular forms of representation in MPS in a more 
autonomous and flexible manner than 2nd graders. This finding reveals the existence 
of a possible developmental trend in pupils’ abilities in MPS based on different forms 
of representation. Further research is needed to examine and verify this finding. 
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We expand the theoretical perspective based on the notions of description and 
conflict, which was previously used to the learning of functions and calculus, to the 
learning of deductive geometry supported by Dynamic Geometry (DG) environments. 
Based on prior studies on functions and on the potential role of a DG software, we 
analyze a case study in which the student’s reaction to a problem strongly differ from 
the pattern observed during in-service courses for teachers. We argue that this 
student’s different background allowed her to experience a conflict, which has given 
her means to expand her conceptualization. Finally, we contrast this behavior with 
the narrowing effect of mere formulae application, which has been observed in the 
typical response given by teachers to the same problem during in-service courses. 

INTRODUCTION
We integrate two different aspects of the authors’ previous research. In Giraldo & 
Carvalho (2003a, 2003b) and Giraldo et al. (2003a, 2003b), we addressed potentially 
positive uses of theoretical-computational conflicts in the teaching and learning of 
functions and calculus. In Belfort & Guimarães (1998), Belfort et al. (1999) and
Belfort et al. (2003), we discussed the role of Dynamic Geometry (DG) environments 
on the development of deductive reasoning in geometry. The clear indications that 
conflicts play a crucial role on students’ behavior when dealing with DG 
environments, as also observed by other authors (see Hadas et al., 2000), led us to 
revisit our work in Dynamic Geometry from a new theoretical perspective. In the 
following sections, we summarize our previous work, present a mathematical 
problem explored in DG environment and analyze the reactions of a secondary 
student when dealing with a conflict situation. 

DESCRIPTIONS AND CONFLICTS 
In Giraldo & Carvalho (2003b), a description is defined to be any reference to a 
mathematical concept, employed in a pedagogical context, comprising inherent 
limitations with respect to the associated formal definition. Thus, descriptions may be 
drawings, formulae, verbal or written sentences as well as computational 
representations. Limitations of a description may lead learners to situations of 
apparent contradiction or confusion, when the associated theory seem to have flaws 
or not to apply to that particular case. We have used the term conflict to refer to a 
situation like this, and the theoretical-computational conflict to the case of a conflict 
associated with a computational description  (see Giraldo & Carvalho, 2003a; Giraldo 
et al., 2003a). Although we have defined a description as a reference comprising 
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intrinsic limitations, these limitations may be actualized on the form of conflicts in 
very diverse manners (if at all). Moreover, the effect of conflicts on learners’ concept 
images (in the sense of Tall & Vinner, 1981; Tall, 1989, 2000) is not a intrinsic 
feature of the related description, but depends on the whole pedagogical context, 
including approach adopted by tutors, learners’ attitudes and beliefs and so on. 
Mathematics education literature provides examples of positive and negative effects 
of computers’ limitations. Hunter et al. (1993) observed that students using software 
Derive did not need to substitute values to get a table and sketch graphs. As a result, 
they did not develop the skill of evaluating functions by substitution. Even students 
who could perform the evaluation before the course seemed to have atrophied the 
skill afterwards. This result uncovers a narrowing effect: the intrinsic characteristics 
of a description lead to limitations on the concept images developed by learners. In 
our own interpretation, such effect was not due to conflicts, but on the contrary, to 
their absence (see Giraldo et al. 2003a). Hadas et al. (2000) present a set of DG 
activities in which the possibility (or impossibility) of a construction was against 
students' intuition. The activities were meant to motivate the need to prove, by 
causing surprise or uncertainty. The proportion of deductive explanations was 
considerably greater in situations involving uncertainty. The authors conclude that 
uncertainty brought proofs into the realm of students’ actual arguments. As a result, 
they naturally engaged into the mathematical activity of proofing. 
In our previous work, we analyzed effects of computational descriptions for the 
concept of derivative on undergraduate students’ concept images. In that case, the 
limitations were strongly related to the fact that the finite structure of computational 
algorithms is used to describe a mathematical concept theoretically grounded on an 
infinite limit process. In Giraldo et al. 2003b, we analyzed six students dealing with a 
computational description for functions in which a differentiable function seemed not 
to be, due to graphic windows ranges. We observed that for some students, their 
previous concept images enabled them to almost immediately solve the theoretical-
computational conflict. For others, the conflict motivated the construction of new 
cognitive units, acting to enrich their concept images. For others yet, no conflict was 
actualized. In Giraldo et al. 2003a, we analyzed reactions of a student, Antônio 
(pseudonym), dealing with tasks involving computational descriptions for 
differentiable and non-differentiable functions, based on the notion of local 
straightness. We observed that one particular aspect of Antônio’s beliefs towards the 
computer played a crucial role on his behavior and strategies: he spells out clear 
awareness of the device’s limitations and of the possibility of ‘mistaken’ outcomes to 
be produced. We observed different effects of theoretical-computational conflicts on 
Antônio’s concept image. In some situations, his previous experience gave him 
means to quickly grasp the theoretical issues related with the conflicts. In that case, 
the conflicts acted as a reinforcement factor, strengthening his previous knowledge. 
In other situations, his knowledge of the subject was not enough to enable him to 
comprehend what was going on; and the conflicts acted as an expansion factor,
triggering new linkages between cognitive units. In other occasions yet, his previous 
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beliefs constituted an obstacle to perform the task; and the conflicts acted as a 
reconstruction factor, prompting him to rethink and rebuild structures in his concept 
image (see also Giraldo & Carvalho 2003a, 2003b). 

CONFLICTS IN DYNAMIC GEOMETRY 
When we consider the use of Dynamic Geometry, similar results are found in Belfort 
& Guimarães (1998). We observed in-service teachers’ courses dealing with a 
Dynamic Geometry environment. On one of the activities, teachers were asked to 
find empirically the rectangle with perimeter m40  and greatest area possible. Due to 
floating point errors, the software could give approximate values. As a result, some of 
the teachers obtained the maximum area of 2100m , but the values for the side were 
inconsistent. For example, one of them found sides of m03.10 and m97.9 . We reported 
that, initially, the teachers ended up in a deadlock, and were unable to figure out the 
correct answer at all. However, we remark that the further investigation about the 
software ‘mistake’ led to the necessity to find a theoretical solution for the problem. 
In fact, similarly to Hadas et al. (2000), we concluded that software’s limitations may 
be used as a powerful tool for the development of deductive reasoning in geometry 
(see also Belfort et al., 2003). 
As discussed in Guimarães et al. (2002), so far, our work on the influence of DG 
environments was based on previous studies by Parzysz, 1988; Arsac, 1989; Laborde 
et Capponi, 1994; Balacheff, 1999. In the case of geometry, the concrete object is 
often a diagram. To understand the differences between the student and the teacher in 
its exploration, these authors often consider two different objects: a concrete object, 
the drawing, which is a material representation of a specific formal object, called the
figure, which corresponds to the class of drawings representing the same set of 
specifications. Not only DG environments can have a role in helping learners to move 
from the drawing to the figure but also they may be used as a tool to help students to 
conjecture and to understand the necessity of proof. 
On the other hand, the idea that DG’s limitations may be used as a powerful tool for 
the development of deductive reasoning in geometry was consistent with the notion 
of conflict discussed in the previous section. This conclusion led us to look for 
theoretical similarities between our previous studies on theoretical-computational 
conflicts and on Dynamic Geometry environments. On that account, we present in 
this article a case study on a student’s reaction to a DG environment and search for 
understanding the results on the light of the notions of description and conflict.

THE PROBLEM 
In this section, we briefly present the problem used as main the task in the case study 
to be analyzed. This problem has been applied many times as an activity in in-service 
teachers courses in our University, when samples of participants’ reactions have been 
tape-recorded and a consistent behavior has been recognized. We summarize below 
the typical behavior of in-service teachers when dealing with this task. 
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The search for activities that can move our teachers away from meaningless 
application of formulae and towards conceptual understanding led us to explore 
historical examples of concept development. One of such examples is the problem of 
“parallelogrammic areas”, which can be found in The Elements of Euclid, book I 
(Heath, 1956, vol. I, p.325). Euclid’s study of areas in book 1 start from proposition 
35, as shown in figure 1, and ends by the proof of Pythagorean Theorem and its 
converse (propositions 47 and 48).  

Figure 1: Euclid’s Proposition 35, book 1, in DG environment 
Instead of assigning numeric values for area measurement, the arguments used by 
Euclid to prove every result in this sequence is based on intuitive axioms (such as: 
congruent figures have equal areas) and logically deducted from previous theorems  
(including congruence of triangles). In order to explore these results in a computer 
environment, we prepared a series of sketches using Tabulæ software (Barbastefano 
et al., 2000), which allowed the students to explore a large number of examples, by 
modifying the parallelograms. As the DG software allowed the students to 
numerically evaluate the areas, the modifications in the parallelograms could be used 
as an illustration of the equality of the areas whenever the pair of parallelograms 
satisfied the conditions of the theorem.  
In this episode, participants do not deal with a theoretical-computational conflict 
from the same nature as the one reported in the maximum area problem. The 
numerical evaluation of the two areas made by the DG software are equal for each 
pair of parallelograms satisfying the hypothesis of Proposition 35, confirming the 
mathematical result. Our aim with this activity was to motivate students to develop 
arguments to justify the result, without using the well-known formulae. In order to do 
so, the exploration was supported by written guidelines.
We have applied this activity with different groups of mathematics teachers. As a 
general pattern, they start to work by using the formulae and they do not seem to be 
aware of the possibility of constructing a non-numerical solution to the problem. That 
is: the idea of area is strongly attached to area measurement. Once they overcome this 
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initial obstacle, in-service teachers seem to profit from the experience and become 
more aware of area as a concept, independent of its measure. It was also observed 
that once they start to grasp the validity of Euclid’s arguments of proof, they become 
able to apply these arguments to prove other results of the sequence of propositions. 
It is also interesting to remark that not a single time any student brought about the 
discussion that the figures moving on the computer screen suggest that the perimeter 
of the parallelograms might tend towards infinity whilst the area remains constant. 

THE CASE STUDY 
The episode we analyze here was observed when we were testing a set of activities to 
be used in in-service teachers courses. The subject is a last year secondary student, 
Luiza (pseudonym), with a performance in mathematics considered as below average 
by teachers. On the other hand, she was considered one of best performance students 
by her teacher of “ruler and compass constructions” (which, in Brazil, is studied as 
topics of Graphic Arts in secondary school). In particular, she acknowledged that 
although she had mathematical lessons on area measurement, she was not familiar 
with usual formulae – unlike the participants of our teacher training courses. Thus, 
the results of this case study strongly differ from the typical pattern reported above. 
We will analyze Luiza’s reactions when dealing with the activity based on the 
computational description for Euclid’s Proposition 35. She was given a screen as the 
one displayed on figure 1 and the written guidelines. She was then asked to explore 
the sketch and to decide whether or not the areas of the two parallelograms were 
equal. Before reading the guidelines, she dragged the vertices of the parallelograms, 
pulling one of them away to obtain a picture with two very different looking 
polygons, as displayed on figure 2. She commented: 

Luiza These areas can’t possibly be equal! One of them is much bigger than the 
other! [Points to the parallelogram with longer sides on the screen.] 

Figure 2: Luiza’s interaction with the sketch for Proposition 35. 
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Luiza started to follow the instructions on the guidelines, which asked the students to 
verify step by step the arguments of Euclid’s proof for proposition 35. She had no 
trouble to recognize the congruence of triangles ADF and BCE, and she immediately 
jumped to the conclusion that they had the same area. She had no trouble either to 
understand that if the area of the triangle XCF was subtracted of the area of each of 
triangles, and the area of triangle ABX was added to the remains, the results of these 
operations were the areas of the two parallelograms pictured in the sketch and, 
therefore, they had the same area.
After she reached the conclusion, the interviewer modified the parallelograms and 
asked her if the results still held. She felt no need to repeat the arguments step by step 
and commented that it was obviously true. It is also important to notice that Luiza 
became completely convinced by Euclid’s arguments that the two areas were equal, 
giving up her previous conceptions, which were merely based on visual observation 
of the different shapes. In our interpretation, it is not the case to conclude that, by the 
end of the episode, Luiza gave up her beliefs on her visual observation. Rather, she 
has aggregated the logical arguments based on visual perceptions used by Euclid to 
expand her capacity to understand the concept of area. It became clear to her that 
different shapes can have equal areas. 

FINAL REMARKS 
Throughout our experience with in-service teachers training, a consistent behavior 
has surprised us: almost without exceptions, participant teachers were unable to 
conceive the notion of area without the idea of measurement. In the theoretical 
construction, area is first defined as a geometrical property – an attribute of polygons 
– which can further be represented by a real number for classes of equivalent 
(congruent) figures. Such behavior suggests that the description for areas by means of 
area measurements has been overused, leading to a narrowing effect on teachers’ 
concept images. 
Luiza’s different background enabled her to experience a conflict: the geometrical 
description suggested to her that the shapes could not have equal areas. In the case of 
the teachers in the in-service courses, such conflict is not even actualized – for them 
area is merely width times height and this description overshadows any potential 
space for query. As we have commented, the conflict situation has led Luiza to 
aggregate logical argument as tools for understanding the concept of area. In 
particular, Luiza’s prompt conclusion that the result she just explored would hold for 
a new pair of parallelograms suggests that she has shifted her conception of this 
diagram from drawing to figure (in the sense of Laborde & Capponi, 1994). 
Furthermore, the conflict has given her means to grasp something meaningless 
before: that parallelograms with same width and height have equal areas. This effect 
is suggested by her own comment, in the end of the interview: 

Luiza Why didn’t anyone teach me like that before? 



www.manaraa.com

PME28 – 2004  2–461

To conclude, let us revisit the final paragraph of our report on the in-service training 
teachers’ reactions to this activity. We stated that, at the first moment, they do not 
recognize that we are presenting them to an actual problem. In fact, as these teachers 
seem to consider the area formulae as “axioms”, we are presenting them to no real 
conflict, but to a simple application of well-known previous results. So, the initial 
obstacle to overcome when developing this activity with these teachers is to bring to 
light at least two underlying conflicts: (1) the difference between area as an attribute 
of bi-dimensional shapes and area measurement (better still: one among several of its 
possible measurements); and (2) the inherent difficulties on the process of obtaining 
the formulae up to the final generalization to real numbers. 
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This paper reports on methods of students’ justifications of their solution to a 
problem in the area of combinatorics.  From the analysis of the problem solving of 
150 students in a variety of settings from high-school to graduate study, four major 
forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) 
Elimination Argument, and (4) Analytic Method  (use of formulas.) The predominant 
method for students was reasoning by cases where they used the heuristic of 
controlling for variables or a recursive argument.  Only graduate students and one 
senior undergraduate student1 correctly used analytical methods. 
INTRODUCTION
It is hardly disputable that justification and reasoning about solutions is an important 
goal for students doing mathematics.  In recent years, attention to student thinking 
has suggested that there are rich and creative differences in students’ approaches to 
problem solving and in students’ supporting the solutions they pose.  The purpose of 
this study is to describe several of these approaches from a diverse population of 
students in the area of combinatorics. In particular, we will: (1) analyze the different 
approaches used by the students to solve the problem and justify their solution; (2) 
consider how the challenge to justify triggered in students’ reflection on their 
reasoning, and (3) present arguments from a wide variety of students ranging from 
second year high-school to graduate study. 
THEORETICAL FRAMEWORK 
In order to reach conclusions about a student’s level of understanding a teacher must 
encourage students to justify what they say and do to reveal their thinking and logic 
(Pirie & Kieren, 1992).  Too often, in traditional mathematics classrooms, the answer 
key or the teacher is the source of authority about the correctness of answers, and 
unfortunately, quick, right answers are often valued more than the thinking that leads 
to the answer. Requests to explain their thinking are posed to students frequently only 
when errors have been made. Sanchez and Sacristan concluded from studying the 
written work of students that students are not accustomed to expressing mathematical 
ideas, and offer as an explanation that the emphasis mainly is on producing correct 
solutions (2003). One consequence is that students develop the belief that all 
problems can be solved in a short amount of time and they will not persist if a 
problem cannot be solved quickly.  In a survey by Schoenfeld (1989) of high school 

                                          
1 Robert was a senior undergraduate student who had extensive experience working with tower 
problems as a high-school student in Rutgers University longitudinal Study. 
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students who were asked to respond to the question of what is a reasonable amount of 
time to work on a problem before they knew it was impossible, the largest time 
response given was twenty minutes and the average was twelve.
Another factor that might explain students’ hesitancy and discomfort in justifying 
ideas is a de-emphasis on explanation of problems that are correctly solved. 
McCrone, Martin, Dindyal, & Wallace (2002) argue for a change in pedagogy in 
which teachers focus on the problem structure and the justification.  They suggest 
that in doing so, students will have a better understanding of the underlying 
mathematical concepts and will develop a better sense of the need for proving. 
It is our view that the call for explanation and justification triggers in students the 
need for sense making and reflection. Problems posed to students that require 
accountability of their ideas lead to successful justification of them. 
THE STUDY
The following problem was originally posed by a tenth-grade student, Ankur, to, four 
classmates in fall 1997. Ankur and his classmates were working together as part of a 
after school component of a Rutgers University longitudinal study (Maher, 2002). 

How many towers can you build, four high, selecting from cubes available in three 
different colors, so that the resulting towers contain at least one cube of each color?  List 
all the possible towers.  Justify that you have them all. 

When the problem was originally presented by Ankur, the students partitioned 
themselves into 2 groups and 3 forms of reasoning evolved. Since 1997, the same 
problem was then given to several cohorts of students enrolled in liberal arts 
mathematics and in graduate mathematics-education courses. Students presented their 
written work and were invited to give further verbal explanations and clarifications of 
their solutions.  Researcher notes provided the data for the oral explanations. 
Analysis of the written and oral work of about 150 students indicates the forms of 
reasoning and justifications offered. In this report the reasoning of 22 students is 
described. The students have been selected as representative of the larger collection 
of data.
RESULTS
The justifications that the students used to show that they had indeed found all 
possible towers can be placed into four major classifications  (1) Justification by 
Cases, (2) Inductive Argument, (3) Elimination Argument, and (4) Analytic Method
(use of formulas.)  Representative solutions from the high-school (H), undergraduate 
(U) and graduate (G) students are presented according to the general arguments 
provided: 

Justifications by Cases
(H)-Romina, Jeff and Brian’s Solution. They indicated that the set of all possible 
towers could be partitioned into six groups. Since every tower would have two of one 
color, they focused on the placement of the duplicate color, using x’s and 0’s. They 
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indicated that for each placement of the first, or duplicate color, there would be two 
possible combinations for the second and third colors.  They also indicated that these 
combinations would have two opposite arrangements for the 2nd and 3rd colors.
They then tripled the 12 possibilities to represent every color, concluding that there 
should be a total of 36.  
(U)-Joanne and Donna’s Solution:  If there are three colors available to make stacks 
of four, two blocks will always be the same color. Put like cubes in 1st and 4th

position. Then put the like colors in positions 1 and 3. Next put the like colors in 
positions 1 and 2. Next put the like colors in positions 2 and 3.Next put the like 
colors in positions 3 and 4. Finally put the like colors in positions 2 and 4. There 
were 6 towers for each position of the blocks of the same color because there are 3 
possibilities for the blocks of the same color and two possibilities for the remaining 
spots that are not taken by the blocks of the same color. Knowing that there are 6 
towers for each color combination and 6 color combinations gives 36 towers. 
(U)-Rob and Jessica’s Solution: Working with two yellow cubes, fix the top cube as 
Blue and then moved the Red cube into the second, third and fourth positions for a 
total of three towers.  Fix the Red cube on top and moved the Blue cube into the 
second, third and fourth positions to create three more towers.  Place a Yellow cube 
on top and placed the second Yellow cube in the second, third and fourth position. 
Each position of the second Yellow cube will produce two towers because the 
position of the Red cube and the Blue cube can be reversed. This gives six more 
towers for a total of twelve towers with two Yellow cubes. Repeat this process for 
two Red cubes and two Blue cubes to give a total of thirty-six towers. There has to be 
one color that appears twice, while the other two colors appear once.  
(U)-Marie’s Solution. If the Blue cube appears twice first fix the position of the Blue 
cube on the top and move the second Blue cube to all possible positions. There are 
two towers for each position because the other two colors can be reversed. Fix the 
first Blue cube in the second position and move the second Blue cube into two 
possible positions. Again each position will give two towers. Finally place the two 
Blue cubes in the third and fourth position to give two more towers. This process can 
be repeated for each of the other colors. 
(U)-Bob’s 2nd Solution. There has to be one color that appears twice, while the other 
two colors appear once. If the Blue cube appears twice keep the two Blue cubes 
together and move to all possible positions. There are two towers for each position 
because the other two colors can be reversed. Next separate the two Blue cubes by 
one and move into all possible positions. Again each position will give two towers. 
Finally place the two Blue cubes in the first and fourth position, separated by two 
cubes, to give two more towers. This process can be repeated for each of the other 
colors. [Note: Bob originally used an inductive method to produce his towers (see 
below) and then later gave a cases argument.] 
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 (U)-April’s Solution. Start with Blue on the top. If there is also a Blue in the second 
position, the third and fourth position must be PW or WP in order to have all three 
colors in the tower. If the second cube is Purple the other two cubes must have at 
least one White cube. They can be WW, BW, WB, WP or PW.  If the second cube is 
White the other two cubes must have at least one Purple cube. They can be PP, PB, 
BP, PW or WP. This gives 12 combinations with Blue on top. There are also 12 
combinations with White on top and 12 combinations with Purple on top for a total of 
36 towers. 
(U)-Bernadette’s Solution. Place the Blue cube in the first position of the tower. If 
there are two blue cubes, the second blue cube can be in the second, third or fourth 
position. There are two towers for each position because the other two colors can be 
reversed. If there are two Purple cubes they can be together in the 3rd and 4th position 
or the 2nd and 3rd position or spit between the 2nd and 4th position. The remaining cube 
must be White.  Similarly if there are two White cubes they can be together in the 2nd

and 3rd position or the 3rd and 4th position or spit between the 2nd and 4th position. The 
remaining cube must be Purple. This gives a total of 12 towers with blue on the 
bottom. There are also 12 towers with Purple on the bottom and 12 towers with 
White on the bottom for a total of 36 towers. 
 (G)-Tim’s Solution. Given three colors Red Yellow and Green, towers 4 tall 
containing at least one cube of every color will yield towers with I Red, I Yellow. 2 
Green: 1 Red, 2 Yellow, 1 Green; and 2 Red, 1 Yellow, 1 Green. All these cases will 
be equal in number. Consider 2 Red and 2 Green. There are 6 towers that are 4 tall 
with 2 Red and 2 Green. Now exchange a Yellow for one of the Red’s in each tower. 
There are two ways to do this for each tower. Therefore there are 2 � 6 = 12 towers of 
1 Red, 1 Yellow, 2 Green; 1 Red, 2 Yellow, 1 Green; and 2 Red, 1 Yellow, 1 Green, 
for a total of 36.
(G)-Traci’s Solution Find all permutations with A on the bottom then all with B on 
the bottom then all with C on the bottom. From Traci’s diagram and annotations one 
can see that she started by fixing the first three rows as color ABC. Then row 4 can 
be any one of the three colors. Keeping the first two rows as A and B the remaining 
two rows can either be AC or BC because we have already accounted for all towers 
with C in the third row and we have to use all three colors.  Thus we have a total of 5 
towers with AB on the bottom. She next fixed the first three rows as ACB. Again row 
4 can be any one of the three colors. Keeping the first two rows as A and C the 
remaining two rows can either be AB or CB because we have already accounted for 
all towers with B in the third row and we have to use all three colors.  Thus we have a 
total of 5 towers with AC on the bottom. If we fix the bottom as AA the top two 
blocks can only be BC or CB because we must use all three colors. This gives us a 
total of 12 towers with A on the bottom. There are also 12 with B on the bottom and 
12 with C on the bottom for a total of 36 towers. 
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Induction Arguments
(U)-Errol’s Solution. Errol used an inductive method to produce his towers.  He said 
that you could fix the first level as Red.  The second level could then be Red, Yellow 
or Blue.  If the second level were Red than the third and fourth level would have the 
other two colors Yellow Blue or Blue Yellow.  If the second level were Blue then the 
third and fourth level would contain at least one Yellow.  It could be Yellow Yellow, 
Yellow Red or Red Yellow, Yellow Blue or Blue Yellow.  Similarly if the second 
level were Yellow the third and fourth level could be Blue Blue, Blue Red or Red 
Blue, Blue Yellow or Yellow Blue.  This gives twelve combinations which you 
multiply by three since the first cube could be any of the three colors.
(U)-Christina’s Solution. She started by making towers two high by adding A, B, C 
to each of the three colors. Start with towers with color A on the top. Add a block of 
each color to each of these towers. Add a block of each color to resulting three tall 
towers eliminating tower with 3 of one color because it would be impossible to have 
three different colors. Eliminate resulting 4-tall towers that don’t have all three 
colors. Do the same thing starting with towers with color B on top. Do the same thing 
starting with towers with color C on top. 
 (U)-Bob’s 1st Solution. Start with six towers that are three-tall with all three colors. 
Place a Red Yellow or Blue cube on the bottom of each tower. This will give all 
towers with two of the same color on the bottom and the other colors in all possible 
positions. Place a Red Yellow or Blue cube on the top of each of the original six 
towers eliminating the duplicate that you get from having the same color on the top 
and bottom of the tower. This gives all towers with two of the same color on the top 
of the tower. [Note: When Bob did the problem this way he missed the towers with 
the duplicated color in the middle. He found his missing towers when he changed to a 
cases approach (Glass, 2001).] 
(G)-Frances’ Solution. Start with the first block as Red. Then the 2nd could be Red, 
Yellow, or Blue. If the 2nd is Red the third could only be Yellow or Blue. If the third 
is Yellow then the 4th must be Blue If the 3rd is Blue then the 4th must be Yellow. If 
the second is Blue then the 3rd could be Red Yellow or Blue. If Red The 4th could 
only be Yellow. If Blue the 4th could only be Yellow If Yellow the 4th could be Red 
Yellow or Blue. If the 2nd is Yellow then the third could be Red Yellow or Blue If 
Red, the last could only be Blue. If Yellow the last could only be Blue. If Blue the 
last could be Red Yellow or Blue. The same would happen if the first block were 
Yellow or Blue .
Elimination Arguments
(U)-Penny’s Solution. Penny listed all towers four tall with 3 colors using a tree 
diagram, and then crossed off all towers that did not meet her criteria. Her argument 
was a combination of inductive reasoning with elimination. 
(U)-Robert’s Solution.  Start with the number of towers four tall with 3 colors, 34.
Subtract the 3 towers with exactly one color 3(14). Subtract the towers four tall with 
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two colors, with at least one of each color. There are 24 four tall towers with two 
colors, but you need to subtract 2 or 2(14) towers with one color or the other. There 
are three combinations of two colors (Red/Blue, Red/Green, Blue/Green) I multiplied 
it by three. So the number of towers with two of three colors at least one of each 
color, four tall r is 3(24 – 2(14) . The total number with at least I of each color is 34 –
3( 24 – 2 (14)).- 3(14) = 34 – 45 = 36. 
(G)-Liz’s Solution. Start with 34 = 81 towers 4 tall when choosing from 3 colors. 
Subtract out the ones that don’t have at least 3 colors.  There are 24 = 16 with just 
Red and Green, 1 all Red and 1 all Green. There are 24 = 16 with just Red and Blue, 1 
all Red and 1 all Blue. There are 24 = 16 with just Green and Blue, 1 all Green and 1 
all Blue.  There are three duplicates. So there are 3 • 16 – 3 = 45 without at most 2 
colors. 81 – 45 = 36 with at least 1 of each color.
(G)-Mary’s Solution. Consider towers 4-tall choosing from 3 colors. 34  = 81. At least 
one of each color must be present. Go back to towers 4 high choosing from 2 colors. 
Red and Blue, 24 = 16. Red and Yellow, 24 = 16. Yellow and Blue, 24 = 16.  Since 
only 2 colors are represented in each of these cases subtract. 81 – 3(16) = 33. I 
subtracted too many. Red and Blue, Red and Yellow, Yellow and Blue. Each tower 
of one color appears twice so add three back in and end up with 36. 
Analytic Method
(G)-Leana’s Solution. I used a numerical formula. How many ways can you arrange 
AABC = 4! Divide by 2! To eliminate repeats. You get 4!/2!= 12 towers when A is 
the color repeated . The same when either B or C is the color repeated for a total of 
36 towers. 
CONCLUSIONS
The forms of reasoning displayed by the students in this study can be placed into four 
major categories; however there was a great deal of variation within these categories 
and there is also some overlap between categories. The majority of students that used 
an elimination method used formulas to calculate the number of towers. The other 
student that used an elimination method used an inductive method to generate her list 
of all 81 towers that were 4 tall with three colors. All but two of the students who 
choose to do a justification by cases did so by controlling for variables. Marie and 
Bob, instead, used a recursive argument in which they focused on a fixed cubed and 
rotated it exhaustively for particular cases. The approach to arguing by cases varied. 
Students chose different cases into which to separate the towers and different 
variables for which to control as they built their justification. There were also 
variations within the other approaches. For example, students started their inductive 
argument at different tower heights. Errol and Francis started at height one; Christina 
started with height two; and Bob started at height three, but missed some of the 
towers as a result. He eventually resolved the discrepancy when he considered the 
method of cases. Bob was the only student that used two different methods and it 
served him well in finding his discrepancy from the inductive method.  
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The sharing of ideas was an important component in students’ problem solving. It 
provided them with the opportunity to review their work, reflect on their ideas, and 
sometimes to modify their results. While the written work does not show the 
interchange of ideas that came about as students shared their work with others, the 
invitation to students to share their ideas resulted in a more careful review of the 
work and a greater confidence in the reasoning offered. For example, it was only 
after sharing her justification with the instructor that April became confident that she 
had indeed found all possible towers. In some cases, the discussion revealed to 
students flaws in their reasoning, resulting in a re-examination of the solution 
offered. As an illustration, the process of justifying that he had the correct number of 
towers enabled Bob to realize that his inductive method of producing towers had 
caused him to miss several combinations. In this context, we can observe how the 
process of justifying ones' answers can enable students to reflect upon what they have 
done and whether their answer is reasonable. Limitations in space prohibit a 
presentation of the interchange of ideas that came about as students shared their work 
with others. 
While the solutions generally fell into the four categories, the distribution of correct 
solutions was not uniform according to category.  Few students used formulas and 
most of those students also used an elimination argument.  The correct use of 
formulas was limited to graduate students and one senior under graduate student. 
Undergraduates successfully used arguments by cases and induction, and the 
predominate method of solution was reasoning by cases.  
DISCUSSION AND IMPLICATIONS 
Rich problems can be challenging and engaging for students at a wide range of 
levels. Ankur’s challenge, a problem initially proposed to a group of high-school 
students, has turned out to be of interest to students at many levels and has resulted in 
multiple kinds of thoughtful arguments. An important feature of this problem was to  
account for all of the towers and then to build arguments that are convincing to 
oneself and others. It may be that problems that call for explanation and justification 
trigger sense making in students. We suggest that multiple opportunities for students 
to express, revise, and share in writing, and in a verbal exchange of ideas are 
important contributors. Therefore we recommend that instructors consider writing 
problems that invite students to explain and justify their ideas in writing and in the 
verbal sharing of results. 
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DIDACTICAL KNOWLEDGE DEVELOPMENT OF PRE-SERVICE 
SECONDARY MATHEMATICS TEACHERS 

Pedro Gómez, Luis Rico 
Universidad de Granada 

We present the results of a study on the didactical knowledge development of pre-
service secondary mathematics teachers participating in a methods course. In this 
course, we expected pre-service teachers to learn and use a series of conceptual and 
methodological tools that could help them in the design of didactical units.  We coded 
and analyzed the information contained in the transparencies used by the teachers 
while presenting their solution to a series of tasks proposed in the course. Four 
stages of didactical knowledge development were identified and characterized. The 
evolution in teachers’ performance over time is described based on those stages. 

DIDACTICAL ANALYSIS, DIDACTICAL KNOWLEDGE AND 
DEVELOPMENT
Recent discussion about teachers' knowledge originated on Shulman's (1986, 1987) 
proposals on pedagogical content knowledge. Several authors, including Shulman, 
have proposed taxonomies of teachers' knowledge, as an approach to characterize this 
knowledge (e.g., Bromme, 1994; Morine-Dershimer & Kent, 2001). Simon's (1995) 
proposal is somehow different, defining teacher's knowledge as the knowledge 
required to plan and implement lessons. That approach comes from a functional point 
of view. 
We undertake a similar functional approach by focusing on the didactical analysis 
that the teacher carries out to promote students’ learning. Didactical knowledge is the 
knowledge that the teacher uses and puts in practice (and develops) while performing 
the didactical analysis (Gómez y Rico, 2002). Didactical knowledge involves a series 
of conceptual and methodological tools that enable the teacher to examine and 
describe the complexity and multiple meanings of the subject matter, and to design, 
implement, and assess teaching/learning activities. In the methods course under 
study, these tools were organized around four types of analyses: content, cognitive, 
instruction and performance. This study focuses on the knowledge necessary for 
performing content analysis. 
Content analysis is the analysis of school mathematics, that’s say the mathematics 
viewed from its school teaching and learning perspective. Content analysis tries to 
understand the complexity of mathematical subject matter by focusing on its different 
meanings. In the case of the methods course under study, the content analysis 
proposed takes into account three approaches: conceptual structure, representation 
systems and phenomenological analysis. The conceptual structure is the description, 
in terms of concepts, procedures and the relationships among them, of the 
mathematical structure being analyzed (Hiebert & Lefevre, 1986). We see the 
representation systems as a means for expressing and highlighting different facets of 
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the same mathematical structure and we work with them under the assumption that 
they follow a sequence of rules originating in mathematics, in general, and in the 
specific mathematical structure, in particular (Rico, 1996). The phenomenological 
analysis involves the identification of the phenomena that are in the base of the 
concepts, the situations that can be modeled by the mathematical structure, the 
substructures of that structure that serve as models for those phenomena and 
situations, and the relationships between substructures and phenomena (Freudenthal, 
1983).
Within the context of this course and in relation to content analysis, we see learning 
as the process in which pre-service teachers develop the necessary competencies for 
analyzing and interpreting a mathematical subject in terms of the above-mentioned 
notions, and for using the results of this analysis in the other phases of the didactical 
analysis and in the design of a didactical unit. We expect progress in learning to 
express itself in terms of an increasing complexity, variety and structuring of the 
multiple meanings with which the mathematical subject can be described with the 
help of the given notions and in a coherent and justified use of those meanings in the 
other phases of the didactical analysis. 
The study followed the general ideas about cognitive development (e.g., Carpenter, 
1980) and conceptual change (e.g., Schnotz, W., Vosniadou, S., & Carretero, M., 
1999), by assuming that teachers' didactical knowledge development can be 
described as a process of change in terms of a sequence of stages. Our interest was 
descriptive. We hoped that the attributes characterizing those stages, and its use for 
categorizing teachers’ tasks to those stages, would allow us to describe how the pre-
service teachers progressed in their learning of the three notions composing the 
content analysis, of the relationships among those notions, and of the use teachers 
could make of them when designing didactical units. For instance, an attribute 
characterizing those stages could be the number of representation systems appearing 
in each of the tasks carried out by the teachers. A small number of them could be a 
distinctive feature of an initial stage in teachers' didactical knowledge development. 
An increase in that number might be a feature of posterior stages of development. 
Based on the conceptual framework of the study and our experience as teachers’ 
trainers, we identified a list of attributes of the work produced by the pre-service 
teachers during the course. These attributes were organized in terms of different 
levels of complexity and structuring of the conceptual structure, of variety of 
representation systems, connections, phenomena and models, and of use of that 
information in the other tasks of the course.  

PROBLEM DESCRITION  
We can now establish our research problem as follows: to identify and characterize a 
sequence of stages of pre-service teachers' didactical knowledge development and 
describe how the changes in teachers' performance can be represented in terms of 
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those stages. In what follows, we describe the instruments we used for collecting, 
coding and analyzing the data. 
The study was done with last year mathematics students in a methods course. During 
the second half of the course, pre-service teachers were organized in eight groups of 
4 to 6 individuals. Each group chose a mathematical subject (e.g., quadratic function, 
sphere) and worked on that subject following the didactical analysis procedure. This 
procedure involved nine tasks over a five months period, including the final project in 
which each group proposed a didactical unit design. Each task was presented by each 
group to the rest of the class with the help of overhead transparencies. Our basic unit 
of analysis was the information contained in those transparencies. Each transparency 
presents schematic information about the analysis done by the group of its 
mathematical subject using one of the notions involved in didactical analysis 
(phenomenology, representation systems, materials and resources, etc.). 
From the list of attributes described above and an exploratory analysis of the 
collected information, we defined a set of coding variables. These variables 
established the existence (and in some cases the number of occurrences) of an 
attribute in a transparency. The following are some examples of those coding 
variables: the numeric representation system appears in the transparency, number of 
connections among representation systems, the representation systems organize the 
conceptual structure, etc. We produced a list of 121 variables, which were used to 
codify the 72 sets of transparencies. 
We wanted to summarize the information that resulted from this coding in order to: 
(a) identify and characterize a small number of didactical knowledge stages; (b) 
recognize the degree to which the information in each transparency matched the 
characteristics of the stage it was assigned to; and (c) determine whether, for a given 
group of pre-service teachers transparencies, the information contained in them 
indicated an evolution in time. In other words, we wanted to identify and characterize 
a group of attributes defining a sequence of development stages that could allow us to 
explore progress in learning as described above. These attributes had to come from a 
reduced number of variables originating on the coding variables. 
Taking into account the conceptual framework of the study, our experience as pre-
service teachers' trainers and the results of the information coding, we produced a set 
of 12 variables for summarizing that information: 1) number of levels of the 
conceptual map describing the subject; 2) existence of central notions in the 
conceptual structure; 3) number of organizational criteria of the conceptual structure; 
4) coherent use of the organizational criteria; 5) number of connections in the 
conceptual structure; 6) number of representation systems; 7) role played by the 
representation systems as organizers of the conceptual structure; 8) number of 
phenomena mentioned; 9) number of contexts to which those phenomena belong; 10) 
number of substructures used to organize those phenomena; 11) role played by the 
notions of the content analysis (conceptual structure, representation systems and 
phenomenology) on the other analysis (cognitive, instructional and performance) and 
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the design of the didactical unit; and 12) coherence between what is proposed in the 
conceptual structure and the use that is made of it in the rest of the didactical 
analysis.
Given that, from the perspective of this study, the course was structured in four 
phases (one phase for each notion of the content analysis and a fourth phase in which 
these notions were used together on the rest of the didactical analysis), we decided to 
start the cyclic procedure that we describe below with four stages (note that this 
procedure shares many similarities to K-means clustering). 
The values of each variable are divided in ranges. An observation is an n-tuple of 
values (x1, x2, …, x12), where xi is the value of the variable i (e.g., number of 
phenomena) assigned to the information contained in the corresponding transparency.  
These values were obtained from the original coding of the information. We wanted 
to identify and characterize the development stages in terms of these 12 variables in 
such a way that the sequence of stages represented the evolution of the observations 
and produced a grouping of those observations. A stage Sj was an n-tuple of value 
ranges of the variables (r1

j, r2
j, …, r12

j), where ri
j was the values range for the variable 

i (e.g.,  [2,4]: there are 2, 3 o 4 phenomena in the transparency). Thus, the stage j is 
defined by the set of all the ranges of order j of the variables. Once the stages are 
initially defined, each observation is assigned to the stage generating the minimum 
number of discrepancies. When assigning an observation to a stage, a discrepancy in 
a variable appears if that variable takes values that do not belong to the range 
established for that stage. Therefore, the problem becomes one of establishing a 
definition for the stages that minimizes the number of discrepancies with an 
acceptable degree of discrimination among them. 

METHODOLOGY 
We devised a cyclic process for this purpose. Each cycle involves two steps: 
assigning observations to stages and redefining the ranges for some variables and 
stages. In the first step, each observation is assigned to the stage that generates the 
minimum number of discrepancies. In the second step, the variables with the greatest 
number of discrepancies are identified together with the stages in which those 
discrepancies are generated. Next, the consequences of changing the definition of 
those stages (and possibly contiguous ones) in terms of those variables are analyzed. 
The change in ranges follows a double criterion: reducing the number of 
discrepancies, while maintaining an acceptable level of discrimination among stages. 
Once this is done, the observations are reassigned to the new stages. This starts a new 
cycle. The process stops when the changes in the definition of the stages in terms of 
the variables needed to reduce discrepancies involve an unacceptable loss in the 
stages' discriminatory power. 
The above procedure, that we call discrepancy analysis, generates a definition of 
stages that adjusts reasonably to the observations and does not require (as cluster 
analysis does) that the numerical differences of the variables make sense (in our case, 
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for instance, the difference between 1 and 3 representation systems was not 
equivalent to the difference between 5 and 7). This is because the procedure allows 
(and requires) researchers to use their judgment (based on the conceptual framework 
and their experience as teachers’ trainers) when deciding how to change the range of 
variables in order to reduce discrepancies, without an unacceptable loss in the 
discriminatory power of the corresponding stages. Discrepancy analysis neither takes 
into account whether the discrepancies belong to the stage above or below the stage 
to which the observation is assigned (direction of the discrepancy), nor gives a 
different weight depending on the magnitude of the discrepancy. 
The results of the discrepancy analysis were used to define a new set of variables 
satisfying the requirements of cluster analysis. We defined 12 new variables in terms 
of the ranges that characterize the stages. For a given variable, we assigned the value 
1 if the value of the discrepancy variable belongs to the first range (stage 1), the value 
2 to the second range, and so on. Based on these new variables, we produced a new 
set of observations. Each observation is now n-tuple of 12 ordinal values between 1 
and 4. In fact, stage 1 is defined by an n-tuple whose values are all 1. We used 
hierarchical cluster analysis with the Ward's distance definition to produce a grouping 
of these observations in four clusters. Given that this method is very sensible to 
outliers, we excluded those observations with more than two discrepancies. 

RESULTS
Using the assignment of observations to stages resulting from the discrepancy 
analysis, we can describe the results of the cluster analysis as follows: (1) there is one 
cluster containing one of the two observations belonging to stage 1; (2) the other 
observation from stage 1 (having two discrepancies, one of them of magnitude 2), 
together with three observations of stage 3 (having either two discrepancies or one 
discrepancy of magnitude 2) are grouped in a second cluster that contains all 19 
observations from stage 2 (except one, see below); (3) the third cluster contains 19 
observations from stage 3; (4) the fourth cluster contains the 9 observations from 
stage 4, together with 5 observations from stage 3 and one from stage 2, all of them 
having discrepancies in the variable “coherence”. 
These results highlight the fact that discrepancy analysis neither takes into account 
the direction of the discrepancies, nor their magnitude, whereas cluster analysis does. 
It also shows the central role played by the variable “coherence” in the definition of 
stage 4. The results of cluster analysis lead us to maintain the overall structure of the 
stages generated by the discrepancy analysis. We can now describe the four stages of 
didactical knowledge development of content analysis resulting from these analyses. 
Stage 1 is a basic stage in which the conceptual structure has no complexity, several 
organizational criteria are used without any coherence, and at most one representation 
system is used, without any connections. Stage 2 is a transitional stage. It presents a 
slightly better organized and more complex conceptual structure in which there is 
more than one representation system and some connections among them. Stage 3 is 
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represented by a complex conceptual structure organized by a variety of 
representation systems, with many connections among them. There is some 
complexity in phenomenology. Stage 4 presents full complexity in phenomenology 
and shows that the information collected for the three notions is used coherently in 
the other phases of the didactical analysis. 
Table 1 shows the assignment of observations to stages in the discrepancy analysis. 
The number in a cell is the stage to which a transparency (columns) of a group of 
teachers (rows) is assigned. We have underlined those observations that were 
excluded from the cluster analysis. 

Group / Transparency 1 2 3 4 5 6 7 8 9 

1 2 2 2 3 3 4 3 4 4 

2 1 2 3 3 3 3 3 3 4 

3 1 2 2 3 3 3 3 3 3 

4 2 2 2 2 2 3 3 3 3

5 2 2 3 3 3 3 3 4 4

6 2 2 2 3 3 3 2 3 4

7 2 2 3 3 3 3 4 4 4 

8 1 2 2 2 3 3 3 2 2

Table 1. Assignment of observations to stages 
We observe that the groups of pre-service teachers progress in their didactical 
knowledge development of content analysis at different rates. The step from stage 2 
to stage 3 is attained at different moments (at task 3 for three groups, up to task 6 for 
group 4). The productions from two groups stabilize in stage 3. Two of the five 
groups that attain stage 4 do so only in the last task (the design of the didactical unit). 
Group 8 has an erratic behavior, which seems to be due to organization problems 
within the group. 

DISCUSSION 
The methodological procedure used allowed us to characterize a sequence of stages 
and to assign a stage to each observation. Given that the stages are defined in terms 
of ranges of the variables, it is possible to identify those combinations of attributes 
that appear simultaneously in a given stage. In this sense, the sequence of stages is 
illustrative of the pre-service teachers’ didactical knowledge development process.  
For instance, we observe that a low complexity of the conceptual structure occurs 
simultaneously with a reduced number of representation systems. When the 
complexity of the conceptual structure increases, the number of organizational 
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criteria decrease, the number of representation systems increase and they play a more 
important role in the structuring of the conceptual structure. 
The assignment of the observations to the stages (Table 1) shows an evolution of the 
pre-service teachers’ didactical knowledge over time. This gradual progress starts 
from a basic stage probably grounded on previous knowledge and teaching 
experience. The progress is coherent with the sequence in which the different notions 
are introduced during the course. However, there is a lag between the introduction of 
the notion and the moment in which the knowledge of that notion is expressed in the 
teachers’ performance. This lag is probably due to a process of assimilation and 
accommodation that originates with instruction, and develops with the teachers’ 
efforts in performing the tasks assigned to them. For instance, the notion of 
representation system does not consolidate at the time in which this notion is 
introduced in class and teachers are asked to put it into play to analyze their 
mathematical subject. This is only a first step. The knowledge of this notion is 
consolidated when later tasks involve teachers in putting into play these notions in 
order to solve other problems (for instance, performing the phenomenological 
analysis, or designing an assessment activity). 
The differences in progress rates among the groups might have different causes. In 
the case of the step from stage 2 to stage 3, these differences might highlight a 
difficulty in developing and putting into play the notions of representation systems 
and phenomenology. Nevertheless, all groups overcome this difficulty. The step from 
stage 3 to stage 4 is more complex. There are groups that do not attain stage 4, and 
others that do so only in the last task. This might highlight a difficulty in putting into 
play the information collected in content analysis while performing the other phases 
of the didactical analysis and the design of the didactical unit. Neither the instruction, 
nor the activities proposed to the pre-service teachers enabled all groups to overcome 
this difficulty. 
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In this work we show some activities designed with a First Year group of the Mathematics 
Degree to give the graphic register back its mathematical status and promote its use on the 
part of the students. In particular, we have chosen the topic related to improper integration to 
reinforce the use of this register by the students. 

INTRODUCTION AND BACKGROUND 
 Some research has stated the reticence Mathematics students show to use the 
graphic register when they have to solve problems or explain what they do. In particular, 
this reticence appears to be bigger at University level. On the one hand, the lack of 
practice in lower levels make it difficult for them to use this register in a natural way; on 
the other hand, in Higher Teaching this register is usually accused of being “not very 
mathematical”. However, its use may help to avoid numerous calculi or even may be 
used as a “control” and “prediction” register for purely algebraic work. Eisenberg & 
Dreyfus (1991) enumerate three reasons why visual aspects are rejected: 
��Cognitive: visual thinking requires higher cognitive demands than the ones needed to 

think algorithmically. 
��Sociological: visual aspects are harder to teach. 
��Beliefs about the nature of Mathematics: visual aspects are not mathematical. 

Mundy (1987) points out that students usually only have a mechanic 
comprehension of basic concepts of Calculus because they have not reached a visual 
comprehension of the underlying basic notions; in particular, he states that students do 
not have a visual comprehension of the integrals of positive functions being thought in 
terms of areas under a curve (which confirms Orton’s (1983) and Hitt’s (2003) outcomes 
on the dominance of a merely algebraic thought in students, even in teachers, when 
solving questions related to integration). 

Other authors’ works (Swan, 1988; Vinner, 1989) reinforce the hypothesis that 
students have a strong tendency to think algebraically more than visually, even when 
pushed to a visual thought. These authors consider that many of the difficulties in 
Calculus may be avoided if students were taught to interiorise the visual connotations of 
the concepts of Calculus. 
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Among our results (González-Martín & Camacho, 2003), in accordance with the 
previous ones, we observe that, in general, students prefer algorithmic-type headings 
with clear instructions of what is demanded. Moreover, when the non-algorithmic 
questions use the graphic register, their resolution produces big difficulties in students 
(who do not use it regularly) or a high rate of no answers. Many students not even 
recognise the graphic register as a register for mathematical work. On the other hand, 
lack of coordination between registers produces difficulties to students and some 
paradoxes make them hesitate. This lack of coordination, or lack of an adequate use of 
one of the registers, takes them away both from anticipation tools of results to be 
obtained and control tools of obtained results. We also detect some difficulties and 
obstacles (González-Martín, 2002), some of them specific to the improper integral 
concept, as the bond to compacity (inability to conceive a volume, or an area, as finite 
unless the figure is closed and bounded) and the homogenisation of dimensions (a 
volume is attributed with the properties of the area that generates it by revolution, so it is 
thought that an infinite area will originate an infinite volume). They both may be 
aggravated by a lack of coordination between registers. 

THEORETICAL FRAMEWORK 
 Aiming to design our teaching sequence we carried out a cognitive analysis of the 
concepts at issue, trying to detect some difficulties, obstacles and errors that a traditional 
teaching generates in the students and a competence model was designed in order to 
assess several students’ comprehension (Camacho & González-Martín, 2002). For this 
analysis we took into account, essentially, Duval’s (1993) theory of semiotic 
representation systems, but we also considered other author’s contributions on the role 
of errors and problem solving in the theory of representation systems (Hitt, 2000). 
 When it came to design our activities, we gave great importance to the variations 
of the typical didactic contract and to the construction of an adequate environment1 for
each situation (Brousseau, 1988), so that it produces contradictions, difficulties or 
imbalances. This initial condition of “no control” should produce an adaptation by the 
students to try to solve the problematic situation given. To promote this interaction, the 
environment has been designed in such a way that the student can use the knowledge he 
has to try to control it. 
 On the other hand, it has also been designed in such a way that allows the 
student’s work to be as autonomous as possible and his acceptance of the given 
responsibility. This didactic contract is completely new for our students, so we begin 
with situations close to them to provoke a gradual acceptance of this new contract. The 

1 We have chosen the term environment to translate the French milieu.
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environments designed allow not only the building of knowledge, but also of 
mathematical knowledge capable of institutionalisation. 

METHODOLOGY 
 The second stage of our research consists on the design of a teaching sequence 
that helps to mitigate the numerous lacks observed in our students. However, this 
sequence also carries out a function of research methodology, which lets us observe and 
analyse the learning achieved by the students and assess it in an objective way. 
 The sequence was developed with First Year students of the Mathematics degree 
and about 25 students took part regularly. Some of the characteristics of our teaching 
sequence are the articulation of the graphic register with the algebraic one, the 
reconstruction of knowledge from previously studied concepts (series and definite 
integrals), the student is given a bigger responsibility in his learning process, the use of 
non-routine problems (Monaghan et al, 1999) and the systematic construction of 
examples and counter-examples in the two registers.  
 The graphic register is first presented to interpret some results and later to predict 
and apply some divergence criteria. On the other hand, we show the students some 
constraints of this register, which will make necessary the use of the algebraic register. 
This way, the use of the graphic register, with its potentialities and feeblenesses, 
together with the use of the algebraic register will facilitate the coordination between 
both registers. 

The limitation to the study of positive 
functions, in a first moment, and the graphic 
interpretation of the calculus of areas may 
justify the definition by means of limits of the 
improper integral with unbounded integration 
interval: �� ��

�
�

b

aba
dxxfdxxf ).(lim).( .

The study of the behaviour of these two integrals: 

��� ��
� �� �

1

3/1

0
)1) dxxbdxea x

gives cause for observing that two functions with a very similar graph (in particular 
when handmade) may enclose quite different areas. The students may think over the 
possibility to predict when the integral will diverge. Is in this situation that the graphic 
register, if f(x) is positive, allows us to assure that if from a given value on f(x) � k > 0, 
the integral will then be divergent. This conclusion, together with the two already 
calculated examples, lets the students see the potentialities of the graphic register to 

A(x)
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conclude divergence of a given integral and its feebleness to predict convergence, what 
justifies the development of more formal tools. 
 The construction of a table 
with the convergence of the integral 
of the most usual functions, as the 
one showed near, lets operationalise 
both the new definition for the 
improper integral and the divergence 
criterion obtained, reinforcing the 
mathematical status of the graphic 
register, since the divergence of the 
integrals indicated with a (*) can be 
assured using the graphic register. 

 Moreover, the fact that this table is constructed between all the students favours 
their implication in the construction of knowledge and the devolution of the given task, 
following Brousseau’s (1988) ideas. Finally, this table will be used later, when the 
comparison criteria are studied, so the students will feel participants in the theoretical 
development of the concepts. 
 The graphic register and the use of the theory of series 
also allows the construction of useful counter-examples for 
questions that usually produce difficulties to the students. For 
instance, a non-negative function with no limit at infinity 
whose improper integral is convergent may be built just by 
constructing over each integer n a rectangle with area 1/ n2.

Another quite useful counter-example is 
provided by the construction of a function whose 
integral converges, but not absolutely. The classic 
counter-example is the function 

x
xxf sin)( � , out of 

the students’ intuitive reach. Using the theory of 
series and the graphic register, it is much easier to 
build counter-examples of functions that converge 
conditionally. In particular, we show a piecewise 

Funtion
f(x)

Value of the integral from 
� > 0 to infinity 

�
��

)(
�

dxxf

0 Convergent (= 0)     * 
a Divergent     * 

xk, k > 0 Divergent     * 
k � 1 Divergent

0,1
�k

x k k > 1 Convergent
k � 0 Divergent     * akx, a > 1
k < 0 Convergent  

ln kx, k > 0 Divergent     * 
sin kx Divergent
cos kx Divergent

n * 1/n3
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continuous function which over each integer interval [n, n + 1) equals (-1)n.
1

1
�n

. Its 

integral converge, but the integral of the absolute value coincides with the harmonic 
series, divergent2.

DATA COLLECTION, ANALYSIS AND DISCUSSION 
 Our sequence is assessed in several ways. During its implementation some 
working sheets are given to the students to be worked out in small groups, answering to 
new questions using the elements recently introduced; they are also asked to give the 
teacher a table of convergence of the integrals of the usual functions and the resolution 
of some problems. The sequence, globally, is evaluated by means of a contents test (with 
some questions previously used in our preliminary study: González-Martín, 2002; 
González-Martín & Camacho, 2003). Finally, the students are also given an opinion test 
about the most relevant aspects of our design. 
 In our classroom observations we can 
clearly tell the students’ gradual acceptation of the 
graphic register in order to formulate some 
conjectures from the moment the divergence 
criterion is illustrated. At the moment of 
constructing the table of convergences, the 
students use graphic reasoning to conclude the 
divergence of the corresponding integrals and state 
it helps to avoid long calculi. Later, the work 
carried out in small groups is shared and the 
teacher gives his approval, what helps to 
institutionalise this register as a mathematical register. Afterwards, in the sheets given to 
the students we can see how they use much graphic reasoning. For instance, to analyse 
the different behaviours of a positive function in a neighbourhood of the infinity in order 
to conclude the convergence or divergence of its 
integral; also, to prove the falsehood of the following 

statement: “ ����� ��
��

�
1

1
)()( dxxfnf

n
” a group of 

three students constructs the counter-example shown 
next3.

2 In these activities, we emphasize the construction of the functions graphically and not the obtaining of 
their formulae.  
3 They create “triangles” joining the points (n, 1/n2), (n + ½, a) and (n + 1, 1/(n + 1)2).
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 Furthermore, the students show their satisfaction with the use of the graphic 
register in their answers to the opinion test (completed by 24 of the students who took 
part in our sequence) to question 17: “ I think the use of graphics as a part of the 
mathematical work 
is”:

In their answers we can observe that 
two students did not answer the second part of 
this question. What is quite positive is that the 
minimums have been, in both parts, 2. 
Besides, the median in the second part is 3, so 
more than a half of the students think that its 
use “helps a lot to understand things”. 

The exact distribution of the answers 
is the one shown next. 

On the other hand, in the contents 
test, done by 26 students, the questions that 
needed the graphic register have been 
answered by a  higher percentage than in a group that followed a traditional instruction. 
For instance, in the second 
question, which only had one
correct answer between the 
31 participants of the group 
with a traditional teaching 
(who interpreted the graph 
given and sketched a similar 
one to explain the behaviour 
of the second integral) we got 
the following answers: 
��Answers correctly to the first question using clearly the graph: 13 
��Sketches a similar graph for the second integral: 6 
��Answers correctly to the second question using graphic reasoning: 8 

a) 0- Uninteresting. 
It is not formal 

1- Not very 
interesting 

2- Interesting 3- Very 
interesting and 

useful
b)  0- It has 

confused me 
1- Indifferent 2- Helps a bit to 

understand
things

3- Helps a lot to 
understand

things

 PREG17A PREG17B 
N of cases  24  22 
Minimum  2.000  2.000 

Maximum  3.000  3.000 

Median  2.000  3.000 

Mean  2.458  2.545 

Standard Dev  0.509  0.510 

  17-a 
  2 3 

No ans. 1 1 
2 7 2 

17
-b

3 5 8 

Question 2:

We know that ���
�

�1

1

n n
 and 

6
1 2

1
2

�
��

�

�n n
.

In view of these results, what can you say 

about the value of ��
��

1 21
1y1 dx
x

dx
x

?

Use the graph given. 
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 In the third question we got the 
following answers: 
��Answers correctly with graphic 

reasoning (asymptote): 14 
��Answers correctly with algebraic 

reasoning (criteria): 3 
��Infers that the integral of a positive 

function cannot be negative (area): 2 
��Sketches a graph of the function: 3 

CONCLUSIONS
 In this work we have shown some activities, related to the topic of improper 
integration, that try to reinforce the mathematical status of the graphic register in 
university students. In particular, we believe that the changes in the usual didactic 
contract (so that the students themselves can see the utilities and limitations of the 
graphic register) and the work constructing examples and counter-examples, together 
with the graphic interpretation of results, allow to recognise this register and to accept it. 
On the other hand, the approval of the teacher reinforces its mathematical status, 
allowing later institutionalisation. 
 As said before (Eisenberg & Dreyfus, 1991), unwillingness to the use of this 
register is quite strong, the cognitive demands it requires are higher. As a consequence, 
we feel that its use should not be done in an isolated way, but as an habitual  part of the 
instruction, in such a way that the student accepts it and has the “approval” of the 
teacher. For this reason, its use as a part of an experience (as in our case) is positive, but 
may just become anecdotic if, once accepted, its use is not reinforced later. 
 Therefore, some of the open questions that remain are its use regularly during a 
whole semester, the analysis of the change of the students’ attitude towards it and 
whether they would use it in non-routine questions. Our results, although local, support 
the hypothesis that undergraduate students may accept it if its utility is motivated and it 
is used in a reasonable way. 

REFERENCES
Brousseau, G. (1988), Le contrat didactique: Le milieu, Recherches en Didactique des 

Mathématiques, 9-3, 309-336. 

Question 3:
Can you find any mistake in the resolution of the 
following integral?  
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WILL “THE WAY THEY TEACH” BE “THE WAY THEY HAVE 

LEARNED”?

Pre-service teachers’ beliefs concerning computer embedding in math 

teaching.
Gorev D., Gurevich I., Barabash M. 

Achva Academic College for Education, Israel 

Embedding computers in math teaching is not a totally new issue, but the dilemmas 
related to it multiply more rapidly than the answers are being supplied. 
One of the dilemmas that we refer to is related to the success of those who are being 
taught using a certain teaching approach versus their attitude towards the subject they 
learn. E.g., Funkhouser (2002-2003) found in his research that students who receive 
geometry instruction using a constructivist approach by means of computer-
augmented activities do achieve stronger gains in knowledge of geometry concepts 
than students who receive more traditional geometry instruction but they do not 
develop more positive attitude toward mathematics than students who receive a more 
traditional approach. Actually, for the group that studied math in a traditional way it 
was one of the preferred subjects, unlike the group that studied it following the 
constructivist approach with computerized tools. Similar phenomenon was described 
by Poohkay & Szabo (1995) who studied the achievements and attitudes of pre-
service teachers in a primary school program in three groups. One of the groups was 
taught using animation, the second one was taught using computer, the third one used 
texts only. The first two groups gave the same grade to the form of instruction they 
obtained which was lower than the grade the participants of the third group gave, 
though the achievements of the third group were the lowest of the three.
Norton, McRobbie & Cooper (2000) say that in spite of availability of  technology 
the secondary school teachers rarely used computers in their teaching. They 
investigated the reasons for this phenomenon. The results indicate that individual 
teachers' resistance was related to their beliefs concerning math teaching and learning 
and the existing pedagogies, including their views on examinations, concerns about 
time constraints, and preferences for particular text resources. It was also found that 
teachers with transmission/absorption images of teaching and learning and teacher-
centered, content-focused pedagogy had a restricted image of the potential of 
computers in mathematics teaching and learning. By contrast, one teacher with 
images of teaching consistent with social constructivist learning theory and a learner-
focused pedagogy had a broader image of the potential of computers in mathematics 
teaching. Further, staff discourse was also found to be important in determining 
whether computers would be used by students to facilitate their conceptualization of 
mathematics. These findings have implications for professional development related 
to the integrated use of computers in mathematics teaching.  
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Hazzan (2002-2003) related to the attitudes of prospective high school mathematics 
teachers toward integrating computers into their future classroom teaching. She found 
that many of the prospective teachers have added a remark in the following spirit “It 
is worth integrating learning with computers together with learning and teaching 
without computers”. Following Hazzan, a declaration like this indicates that the 
teachers-to-be don’t expect that the computers will resolve all the problems related to 
the math teaching and learning. They rather tend to consider seriously combining 
computer in math teaching. Moreover, the students who have already been exposed to 
the school reality, point at the fact that more experienced teachers hardly encourage 
their younger colleagues to introduce teaching novelties.
We shall base our reference to the situation on findings both of previous research and 
on our own one. Our research population consists of pre-service and in-service 
teachers of primary and secondary school programs. We would like to point out that 
the link between purposes of a math teaching program and courses constructed in 
view of these purposes are not always reflected in students’ views on these links, see 
e.g Patronis (1999).
In our opinion, the role of computerized tools in math learning and in developing the 
math insight of the students is related to numerous factors: 
�� The rapidly developing computerized environments demand appropriate changes 
in didactic approaches to be adopted by the teachers or even to be developed by them 
anew “in real time”. 
�� Variety of math assignments implies a teacher’s ability to fit properly a tool to an 
assignment. E.g., there are several geometric tools of different levels of complexity, 
those more complex demand more skills to operate them effectively, and the less 
complex are also less efficient. There are also several computerized algebraic 
environments etc., some specific topic-oriented computerized tools etc.  
�� The teacher’s professional knowledge must include mastering the variety of 
computerized tools, mathematical knowledge that would render him flexible enough 
in his attitudes and responses to the outcomes of the student’s activities, and 
versatility in combining math tools with computerized tools in and optimal way, the 
optimality itself being a versatile concept. 

Keeping all these in mind, we have been asking ourselves for some time: ”What is 
the most appropriate way to prepare instrumentally and mentally the future math 
teachers to the reality demanding permanent competent adjustment to rapidly 
developing computerized environment in math teaching?” 
In order to try to refer to this question at least partially, we designed a research 
project in which we studied the performances of several groups of students, studying 
several courses at different levels of mathematical knowledge and embedding a 
variety of computerized tools. Moreover, we induced all of the students to experience 
at least two-three different computerized tools in different courses during three years 
of their main education program. The embedding of computerized tools occurred in 
courses in mathematical subject matter courses and in courses in didactics and 
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pedagogy of math teaching. In addition to these, the students took advanced courses 
in embedding computers in math teaching.  
Our research questions were:
- How effective are our computer-equipped courses in providing the future math 

teachers with skills and professional qualifications in appropriate computer usage 
at least for the beginning of their professional career? 

- How our students assess their mastering skills in computerized tools developed as 
a result of theses courses?

- To what extent has their attitude towards computer embedding changed during 
their years in the college?

- To what extent do they expect themselves to use computers in their future teaching 
practice?

The students who participated in the experiment, belong to several categories: 
�� 31 freshmen of pre-service primary school and secondary school programs. 
�� 27 sophomores of pre-service primary school and secondary school programs  
�� 12 freshmen and sophomores of in-service secondary school program, who 

have had previous experience with computer usage in teaching (not necessarily 
mathematics). 

Students of different categories usually studied together in all the courses, thus we 
could compare their performances and the impact of the courses on their professional 
beliefs, and follow the changes that these beliefs underwent as a result of the 
activities.
Materials and methods:
We used three computerized environments in geometry: 

- The Geometric Supposer, The Geometer’s Sketchpad, The Word 
drawing tool; 

And three computerized tools for algebraic- analytic courses: 
- MATLAB, No-Limits, MathematiX.  

The students were presented with assignment sheets which included questions of two 
types: what we regarded “routine” problems and what we regarded “non-routine” 
problems. The teaching settings were also of two types: separate computer-usage 
courses in which the students were being trained to use specific mathematical 
programs, and math courses in which the computerized tools were embedded 
accounting for the context of the lesson.  
The students got an assignment sheet for about 40-45 minutes without an access to a 
computer; after that, they were encouraged to use the computerized tools familiar to 
them to try to solve the problems they had not succeeded to solve, and to substantiate 
the solutions they had found. 
The students were asked to answer whether the computerized tools were used for a 
better understanding of the problems or/and in order to find a solution. 

Referring to the routine problems vs. non-routine ones, we decided not to confine 
ourselves to open-ended problems as a non-routine type in the spirit e.g. of Takahashi 
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(2000), though his findings seem to be rather conclusive. Keeping in mind the future 
vocation of our students, we intended to equip them with approaches that would serve 
both themselves in coping with problems or mathematical concepts they had never 
come across, and their future teaching activities, providing them with a precious 
experience of evolving a concept from the very first steps of acquaintance with it.

Hence, we decided to regard as a non-routine any problem that is not familiar to a 
student, never mind how routine it may be after future sufficient teaching and 
exercising. The routine problem is accordingly a problem in a familiar topic and the 
one the solution to which the student can construct on his own, needing no help either 
from an instructor or from the computer. In this classification of problem, we account 
for an important aspect of the Van Hiele theory, which is the development of the 
insight in the students see e.g. Hoffer (1983). Following Van Hiele, Hoffer defines 
insight as a merge of three main abilities: a) to perform in a possibly unfamiliar 
situation; b) to perform competently (correctly and adequately) the acts required by 
the situation; c) to perform intentionally (deliberately and consciously) a method that 
resolves the situation. Applying newly learned computerized tools both to routine and 
to non-routine problems creates a situation in which the mathematical insight is 
invoked and developed, even if the mathematical problem is originally familiar 
(routine). 

In addition to the tests, the students were asked several questions. As we have 
mentioned earlier one of these questions was: “Do you think you will use these or 
other computerized tools in your future teaching activities?”

Results and observations
In attempt to examine the effectiveness of our computer-equipped courses in the 
future professional activity of our math students we first studied the way they used 
the provided computerized environment in a variety of courses and assignments see 
Gurevich et al (2003).

The students’ responses were analyzed and classified according to the group 
category and the problem kind. Here we refer to the students’ answers only 
concerning the solution of the non-routine problems. The results show that in the 
groups that studied various mathematical courses combined with the intensive 
computer usage in about 69% of cases the students answered that they have used the 
computerized tools for the better understanding of the problem and in about 93% of 
the cases they used computer in order to find the solution. On the other hand in one 
group where the students were only briefly acquainted with the appropriat 
computerized tools only about 12% of the participants admitted that they used the 
computers for the better understanding and only in 3% of the cases the computer was 
used for the solution finding. 

   We present the selection of typical answers reflecting the common atmosphere 
and the opinions of the majority of students: 
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“I had only basic knowledge in computers before the college. Now I can use No-
Limits, MathematiX, The Geometer’s Sketchpad. I shall use the computers in 
teaching if it will be technically possible.” 

“My proficiency in computers did not change, since I was a practical engineer in 
computers before I came to the college. My attitude towards computers usage in 
teaching math also did not change, since I have always enjoyed it, and I shall use 
them if it is possible.” 

“Before the college, I was acquainted only with basic computer tools. Now I 
learned to work with No-Limits, MathematiX, The Geometer’s Sketchpad, 
MATLAB, The Geometric Supposer. I master best The Geometer’s Sketchpad, 
MATLAB, and No-Limits. The computer may be very useful for “visual” learners. 
For example, we have talked and learned about functions, but I actually understood 
the concept of a limit at a point only when I studied it with the computer. I shall 
combine computer and the chalk-and-blackboard methods in my future teaching.” 

“ In spite of my positive experience with computers (for the reasons similar to 
those of the previous student), I am not sure I shall use it in my teaching, since too 
much technical problems are involved: there are no enough computers for all the 
pupils, no spare equipped rooms etc.” 

“ The computer shows things that it is difficult to imagine: e.g., logarithmic 
function, or the sum of angles in a triangle that does not change.” 

“ The computer opened new world for me. But still, when it comes to teaching, I 
doubt if I shall use it. It is too messy to use with the pupils”. 

“ I am good at computers, especially in MATLAB, No-Limits, MathematiX. 
These packages demonstrate beautifully the things we have learned, e.g. graphs of 
functions, geometric constructions etc. But should understand that it does not prove 
things but rather presents them in an unexpected aspect and thus sometimes facilitates 
the search for the proof. I do think that one should use the computers in presenting 
the mathematical concepts, but this should fit the system and the class”.   

Some conclusions 
Referring to this selection of answers, we observe several common features: 
�� We observed a qualitative difference in socio-mathematical aspects of the 
computer usage between math courses and special courses for computer usage in 
math teaching. The lessons in the first setting were lessons in mathematics, they were 
centered about mathematical issues and concepts, and the students regarded 
computers to be another tool, in addition to the chalk-and-blackboard, sometimes a 
very useful one. The lessons in the second setting were regarded as lessons in 
computers, and the mathematics seemed to be of minor importance. Thus, the 
students learned to work with computerized tools, but remembered very little of what 
it was all about. This led us to the conclusion that all the computerized tools are to be 
learned and taught in context – only in such a way this is the meaningful way of 
study.
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�� As a result of the previous conclusion concerning the need to merge the two 
forms of courses, the role of the teacher in such a course will also have to change: 
The teacher must become a mediator between two types of knowledge: disciplinary 
knowledge in mathematics, and mastering skills of ever developing media. The more 
the computerized tools develop, the more they may tempt one to replace the rigorous 
mathematical concept or reasoning by a more or less precise and very pretty picture. 
Hence the teacher is to be able to lead a enlightened mathematical discussion 
delimiting and defining the abilities of the tool.  
�� The teacher-to-be who has undergone the process of coping with non-familiar 
mathematical situation being aware of the limitations of computer usage in 
mathematical learning, is apt to search and find appropriate ways of embedding the 
computer in his future teaching practice.  
�� The students appreciate the visual contribution to their learning process. In this 
aspect, it seems appropriate to relate to vast research literature on the concept of pre-
formal proof and pre-formal approach in general to the teaching of mathematics for 
the students who are at the visual level or are at the transition stage from the visual 
towards more formal levels see e.g. Blum & Kirsch (1991), Straesser (2001), De 
Villiers (1996), Pinto & Tall (2002). It is also known from the literature (see e.g. 
Senk (1989), Mayberry (1983)), that an essential part of freshmen in teaching 
education programs is at the visual level of perception of e.g. of geometrical notions.  
�� The students claimed that mastering several mathematical packages was essential 

in their success and thus they supported the embedding of computers in their own 
learning process. We assert that among the students who participated in the 
experiment, those who were at lower levels of mathematical (in particular, 
geometrical) thinking1, developed some pre-formal reasoning and proof skills, similar 
to those they may expect to come across in their future pupils. This has led them to 
rather positive attitude towards the role of computer in teaching/learning procedures. 
Among the students who appeared to be at upper levels, we discovered in several of 
them a gap at the visual geometrical level. These students did not use the computer 
for their own visualization purposes, but appreciated its potential contribution to the 
learning of their future pupils who are supposed to use it this way.
�� The technical problems related to the computer usage are not negligible. So much 

so that they may persuade not to apply computer at the classroom even those students 
who would otherwise be quite enthusiastic about the idea. 
�� It is important that the lessons in didactics of math teaching include discussions 

on socio-mathematical norms accounting for contemporary research e.g.Yackel, 
2001, Doerr & Zangor, 2000, Goldenberg, 1999. The students who are also future 
teachers experience the approach to computer embedding that does not contradict the 

1 We presented all the participants of the experiment group with the Van Hiele tests to appraise their 
level of geometrical thinking, in particular, in order to relate it to their usage of geometrical 
packages.
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traditional mathematics see e.g. Yerushalmy 1991, Galindo, 1998, Hanna, 1998, but
rather enhance some of inductive options on the way to a solution or to a proof. 
�� Another important aspect is the adjustment of computerized tools used in the 

math course to the level of the students’ mastering the computer. As some of the our 
students’ responds indicate, an inappropriate choice of a tool may obscure the idea of 
the lesson which is sometimes very elementary and accessible for a relatively simple 
tool, like Excel or Word drawing tool. On the other hand, the students must become 
aware of the vast range of opportunities that more sophisticated tools bring with 
them, and be able to utilize these opportunities to the maximal extent. Hence, the 
teacher who is to lead the calls to use the computerized environment is to master a 
wide range of tools. This equally refers to the teachers in the college and to the 
teachers-to-be who are students at present. 
The absolute majority of students tend to use the computers in their future practice if 
the technical side enables that. One of the students pointed out that she will be 
cautious not to appear too innovative, in fear of not being accepted in the math team 
of the school. Others feared that they might loose the control of the class and prefer to 
use the computer for teacher-provided demonstration alone. No one emphasized the 
teacher’s high abilities needed for this kind of teaching. This may indicate at the 
lacking self-image of the students as future teachers and hence their inability to place 
themselves where they are to be in a more or less near future.   
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PROGRESSIVE DISCOURSE IN MATHEMATICS CLASSES – 
THE TASK OF THE TEACHER 

Susie Groves & Brian Doig 
Deakin University 

This paper uses data from two mathematics lessons to explore the nature of 
progressive discourse and examine critical features of teacher actions that 
contribute to mathematics classrooms functioning as communities of inquiry. 
Features found to promote progressive discourse include a focus on the 
conceptual elements of the curriculum and the use of complex, challenging tasks 
that problematised the curriculum; the orchestration of student reporting to 
allow all students to contribute to progress towards the community’s solution to 
the problem; and a focus on seeking, recognizing, and drawing attention to 
mathematical reasoning and justification, and using this as a basis for learning. 

INTRODUCTION
Classroom discourse can be progressive in the same sense as science as a whole is 
progressive. Scientific progress is not one homogeneous flow; it contains innumerable 
local discourses that are progressive by the standard of the people participating but 
that, with respect to overall progress in science, may only be catching up or even may 
be heading in the wrong direction. The important thing is that the local discourses be 
progressive in the sense that understandings are being generated that are new to the 
local participants and that the participants recognize as superior to their previous 
understandings. (Bereiter, 1994, p. 9) 

Our interest in classroom discourse arises, in part, from previous collaborative work 
based on the notion of Communities of Inquiry, which underpins the Philosophy for 
Children movement (see, for example, Splitter & Sharp, 1995). Key features of 
classrooms functioning as communities of philosophical inquiry are the development 
of skills and dispositions associated with good thinking, reasoning and dialogue; the 
use of subject matter which is conceptually complex and intriguing, but accessible; 
and a classroom environment characterized by a sense of common purpose, mutual 
trust and risk-taking. Our concern has been how these features can be made a part of 
everyday classroom practice in mathematics.
In earlier work, we have reported a high level of support among principals, teachers 
and mathematics educators for mathematics classrooms functioning as communities 
of inquiry, together with a realization that current Australian practice falls far short of 
this goal, partly because the cognitive demands of typical lessons are low and do not 
challenge children (Groves, Doig  & Splitter, 2000; Doig, Groves & Splitter, 2001); 
and the critical role of conceptually focused, robust tasks that can be used to support 
the development of sophisticated mathematical thinking (Groves & Doig, 2002). In 
this paper, we focus on aspects of classroom discourse associated with classrooms 
functioning as communities of mathematical inquiry. 
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According to Bereiter (1994), classroom discourse can be progressive in the same 
sense as science, with the generation of new understandings requiring a commitment 
from the participants to working towards a common understanding, based on a 
growing collection of propositions that can or have been tested. In a similar vein, 
Cobb, Wood and Yackel (1991) contrast discussion in traditional mathematics 
classrooms, where the teacher decides what is sense and what is nonsense, with 
genuine dialogue, where participants assume that what the other says makes sense, 
but expect results to be supported by explanation and justification. Mercer (1995) 
proposed three forms of talk that can be used to aid the analysis of classroom talk and 
thinking: disputational talk, featuring disagreement and individualized decision 
making, with few attempts at synthesis; cumulative talk, in which speakers build 
positively, but uncritically, on previous speakers’ utterances; and exploratory talk,
where critical, but constructive, use is made of another’s ideas, challenges are 
justified, and alternative explanations offered. It is this last category of exploratory
talk that resonates with good thinking, reasoning and dialogue in Communities of 
Inquiry. 
This paper uses data from two, apparently quite different, mathematics lessons to 
explore the nature of progressive discourse and examine critical features of teacher 
actions that contribute to mathematics classrooms functioning as communities of 
inquiry.  

A YEAR 1 LESSON ON ADDITION IN JAPAN 
This lesson, observed by both authors late last year in Japan, was taught by an 
“expert teacher”, Hiroshi Nakano, to a Year 1 class of 40 children. The lesson was 
part of a sequence of lessons on addition.  
The lesson commenced with children being presented with a series of flashcards with 
shaded and unshaded dots arranged in two rows of five, and children being asked to 
show how many more shaded dots were needed to “make 10”. This was followed by 
a similar task where the flashcards showed single numerals instead of dots. 
The children were then presented with the problem for the day — finding the answer 
to 8 + 6 and explaining the reasons for their answers. Children worked individually 
for 5 minutes, after which the teacher wrote 8 + 6 = 14 on the blackboard and invited 
particular children to write their solutions on the board.  

Figure 1: Girl 1’s solution for 8 + 6 = 14 
Girl 1’s solution is shown in Figure 1. When asked, most children stated that they had 
used the same method. The teacher then asked the children to guess why Girl 1 had

2     4

8  +  6  =  14

10
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divided the 6 into 2 and 4.  Children responded that this was based on “Nishimoto-
san’s making 10 rule” — apparently formulated by one of the children, Nishimoto-
san, in the previous lesson where the problem was to find 9 + 6. 
The teacher then asked for a different solution. Boy 1’s solution is shown in Figure 2.  

Figure 2: Boy 1’s solution for 8 + 6 = 14 
The teacher commented that this was again using “Nishimoto-san’s making 10 rule”, 
and asked for another way. Girl 2’s solution, still described by the teacher as using 
“Nishimoto-san’s making 10 rule”, is shown in Figure 3. A few children said they 
had used this method. 

Figure 3: Girl 2’s solution for 8 + 6 = 14 
Boy 2 stated that he did not use the “making 10 rule”. Children tried to guess how he 
found the answer — had he used a “making 5 rule”? Boy 2 said he had not and 
explained his reasoning as shown in Figure 4. 
 8 + 6 = 14   
 because    9 + 6 = 15  “we did this before” 
and   8  is one less than  9 .  So,  “if 9  becomes  8,   the answer is one less”. 
 9 + 6 = 15 

       1 less        1 less 
 8 + 6 = 14   

Figure 4: Boy 2’s solution for 8 + 6 = 14 
Many children clapped in response to this solution and a girl commented that this 
used their former knowledge of addition.  
The teacher suggested that they move on to looking at 7 + 6 using the same method. 
Surprisingly, rather than starting with 8 + 6 = 14, Boy 2 again started with 9 + 6 = 15 
as shown in Figure 5. 

4     4 10

8 +  6   = 14 

 8    +    6   =   14 

3 5 5 1

10

4
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 9 + 6 = 15 
           2 less             1 less          1 less  2 less 
 8 + 6 = 14  
 7 + 6 = 13  

Figure 5: Boy 2’s solution for 8 + 6 = 14 
The teacher asked everyone to “check the hypothesis” that the answer is 13. Several 
children demonstrated their solutions using similar methods to those shown in 
Figures 1 to 3 — i.e. using the “making 10 rule”. 
Now that children had confirmed that 7 + 6 = 13. the teacher asked them to complete 
Figure 6, using Boy 2’s method and confirming their answers as before. 
 9 + 6 = 15  
 8 + 6 = 14  
              3 less 7 + 6 = 13      3 less 
 6 + 6 =    
 5 + 6 =   

Figure 6: Using Boy 2’s solution for 6 + 6 and 5 + 6 
One boy continued the list to 0 + 6 and then even further to 10 + 6, 11 + 6, …, 16 + 6. 

A YEAR 7 LESSON ON THE AREA OF A TRIANGLE IN AUSTRALIA 
This double lesson, taught by Gaye Williams to a class of approximately 24 Year 7 
girls in Australia, was videotaped as an “exemplary problem solving lesson” for 
teaching purposes at Deakin University. The lesson was part of a sequence of lessons 
on the topic of the area of a triangle. Video extracts will be shown in the presentation 
to supplement this necessarily brief description of the lesson. 
Girls worked in groups of four, trying to find a rule for determining the area of a 
triangle. One group already knew the rule and was trying to find a rule for the area of 
a trapezium. The teacher introduced the problem by saying: 

You can draw as many triangles as you like …. What you want to do is to try and find 
the amount of space inside them; see if you can find any patterns; think about whether 
those patterns always happen; and try some more if you think you need to try more, 
until you think you know how to tell someone how to find the amount of space inside 
a triangle. I mean there might not even be a rule — except these people [the group 
working on the area of a trapezium] think there is.

The girls were given 10 minutes to make as much progress as they could, before one 
person from each group was asked to report on what their group was thinking about. 
Initially, some groups struggled with the difference between area and perimeter and 
tried to use irrelevant information such as the angle sum of a triangle.  
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As the groups worked, the teacher moved around the room, asking questions and 
observing students working, very much in the manner of the Japanese kikan-shido 
“between desk walking” or “purposeful scanning” (see, for example, Kepner, p. 7).
As well as using this as an opportunity for selecting the order of reporting, the teacher 
also sometimes suggested specific aspects she wanted the group to report. While each 
group could choose who would report, there was an understanding that each member 
would report at some stage during the investigation.
During the initial reporting, the teacher reminded the girls that they were not allowed 
to contradict but only to ask for further explanations.  
After some considerable time, at least one group came up with the standard rule for 
the area of a triangle of “base times height divided by two”. Commenting on this 
group’s report, the teacher said: 

We have a couple of interesting things here. I had a question to ask, but I didn’t need 
to ask it. I was going to ask “Can they really say they have a pattern when they have 
only worked with one triangle?” And then Kathryn went on and said they’d worked 
with heaps of triangles! That’s OK. It looks like they really have a pattern. But I hope 
they looked at some really unusual triangles to make sure it seemed to be happening 
all the time. But then I loved Sarah’s question because when you have found a pattern 
that’s the beginning not the end  — that’s when you have to think “well if it really is 
so, why is it so?” 

Before discussing these lessons further, it should be made clear that neither of these 
teachers is “typical”. Nevertheless, the Year 1 lesson shares many features with 
almost every Japanese lesson observed by us, although the same could certainly not 
be said about the Australian lesson. Nakano is a well-known teacher whose lessons 
have been the basis for many Lesson Studies, including one of the video exemplars 
used in a US-Japan Workshop (see Kepner, 2002; Nakano, 2002), while Williams is 
the author of a book containing a detailed theoretical and practical approach to 
learning through investigations (Williams, 1996).  

THE TASK OF THE TEACHER 
A good discussion occurs … when the net result … is discerned as marking a definite 
progress as contrasted with the conditions that existed when the episode began. 
Perhaps it is a progress in understanding; perhaps it is progress in arriving at some 
kind of consensus; perhaps it is progress only in the sense of formulating the problem 
— but in any case, there is a sense of forward movement having taken place. 
Something has been accomplished; a group product has been achieved.   
(Lipman, Sharp & Oscanyan, 1980, p. 111) 

We would argue that in both of these lessons there is progressive classroom discourse 
in the sense of Bereiter (1994). Moreover, the three key aspects of classrooms 
functioning as Communities of Inquiry could also be observed. We will now discuss 
what we believe are some critical features common to the two teachers’ actions. 
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Problematising the curriculum 
[Students’] understanding increases significantly with their discovery of concepts they 
have built out of their own prior mathematical knowledge.  (Williams, 1996, p. 2) 

In both lessons, the teachers took what is usually regarded, at least in Australia, as a 
standard piece of mathematics, to be taught by either exposition or what Simon 
(2003) refers to as empirical activity, and transformed it into challenging and 
problematic, yet accessible content. As stated earlier, the importance of the 
development of conceptually focused, robust tasks to support the development of 
sophisticated mathematical thinking should not be underestimated.  
In Japan, this is supported through the use of Lesson Study, which aims to research 
the feasibility or effectiveness of a lesson (see, for example, Kepner, 2002; Nakano, 
2002). Moreover, a common framework for lesson planning in Japan uses a four 
column grid with the first showing the following steps: Posing a problem, Students’ 
problem solving, individually or, less frequently, in small groups; Whole class 
discussion; and Summing up; possibly followed by Exercise/extension. Each of these 
is accompanied by entries under the column headings of Main learning activities; 
Anticipated student responses; and Remarks on teaching (Shimizu, 2002). This 
common lesson pattern, based on students’ actual and anticipated solutions of a 
single problem, together with an in-depth analysis of these solutions, promotes the 
problematising of the mathematics curriculum. 
As well as kikan-shido, referred to earlier, key pedagogical ideas shared by teachers 
and forming observational criteria include: hatsumon — thought-provoking questions 
important to mathematical development and connections; neriage — raising the level 
of whole class discussion through orchestration and probing of student solutions 
(Kepner, 2002); and yamaba — regarding a lesson as a drama structured around a 
climax or “yamaba” (Shimizu, 2002). 
Establishing an appropriate  classroom environment 

Where elegance and originality are valued; the search for the most elegant solution 
becomes the intrinsic motivation of the group.  (Williams, 1996, p. 2) 

The classroom environment in both lessons was clearly characterized by a sense of 
common purpose, mutual trust and risk-taking in the sense of Communities of 
Inquiry. The common purpose was achieved through both the use of a task that was 
genuinely problematic, yet accessible, for students, and through the establishment of 
social norms that valued individual (and group) contributions to the solution process.  
In the case of the Australian lesson, it was evident that a great deal of effort had been 
made by the teacher to establish an environment where risk-taking was both 
supported and simultaneously minimized — for example, as stated earlier, the teacher 
reminded the girls during a report they were not allowed to contradict but only to ask 
for further explanations. This was one of many “rules” that formed part of explicit 
social norms operating in her classroom (see Williams, 1996, for further details). In 
Japan, while such social norms still need to be established, the fact that there is a 
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common pattern of lessons and a shared understanding among teachers of key 
pedagogical ideas, means that students anticipate how a mathematics lesson will 
operate and do not need explicit instruction on the social norms. Moreover, Japanese 
teachers frequently make a point of using students’ incorrect solutions as a stepping 
stone to the class developing their understanding. In Australia, a great deal of 
successful effort has gone into establishing safe classroom environments, although 
there is very little emphasis on establishing a common (intellectual) purpose, 
especially when, in many primary schools particularly, groups of students are often 
working on different tasks — a practice that clearly mitigates against progressive 
dialogue, at least in the whole-class setting.
Focusing on good thinking and dialogue 

I would like to make my class enjoyable for children’s thinking. I want the class to 
operate so that the children’s thinking can be recognized by others and also by 
teachers. I also like to make the class feel that they can find out about the similarities 
and differences of their ideas in relation to others.  (Nakano, 2002, p. 65) 

In both lessons, not only were there well-established social norms relating to 
discussion, but also, in Yackel and Cobb’s (1996) sense, well-established socio-
mathematical norms for what counts as acceptable explanations and justifications. 
Simon (2003) describes a Year 6 lesson also on the topic of the area of triangles as 
constituting empirical activity as opposed to logico-mathematical activity and defines 
mathematical understanding as requiring a “learned anticipation of the logical 
necessity of a particular pattern or relationship” (p. 185). In contrast to Simon’s 
lesson, the Australian lesson explicitly emphasized the need for this logical necessity 
when the teacher stated that “when you have found a pattern that’s the beginning not 
the end  — that’s when you have to think well if it really is so, why is it so?” 

CONCLUSION
While the two lessons discussed here clearly differ in many respects, there are also 
many similarities, with the different contexts highlighting the ways in which the 
teachers promoted progressive discourse. Firstly, both teachers had a clear focus on 
the conceptual elements of the curriculum and were able to devise and sustain the use 
of complex, challenging tasks, that problematised the curriculum. Secondly, 
progressive discourse was promoted through the orchestration of the reporting of 
student solutions, starting with the least mathematically sophisticated in order to 
allow all students reporting to progress the community’s solution to the problem. 
This aspect requires the teacher to not only interact with students as they work on the 
problem, but also to anticipate potential solution strategies and select an order for 
student reporting. Most of all, progressive discourse was promoted through the 
teachers’ focus on seeking, recognizing, and drawing attention to mathematical 
reasoning and justification, and using it as a basis for learning. Factors that appeared  
not to affect  progressive discourse in these cases included the age of the students, the 
mathematical topic, nor the use of co-operative group work. 
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In this paper we report on a research aimed to identify and characterize secondary 
school students’ reasoning and proof abilities when working with 3-dimensional 
geometric solids. We analyze students’ answers to two problems asking them to prove 
certain properties of prisms. As results of this analysis, we get, on the one side, a 
characterization of students’ answers in terms of Van Hiele levels of reasoning and, 
on the other side, a classification of these answers in different types of proofs. Results 
from this research give directions to grade and organize secondary school 
instruction on 3-dimensional geometry. 

INTRODUCTION
The little time devoted by primary and secondary school teacher to teach space 
geometry is parallel to the little (and quite often wrong) knowledge students show 
when they have to solve problems in this geometry field. There is an active 
international research agenda interested in solving several questions related to this 
problem, like relationships between visualization abilities and the learning of space 
geometry (Gutierrez, 1996; Kwon et al., 2001; Malara, 1998; Meissner, Pinkernell, 
2000), subjects’ reasoning processes (Gray, 1999; Guillen, 1996; Lawrie et al., 2002; 
Meissner, 2001; Owens, 1999), students’ knowledge and ways of learning (Jirotkova, 
Littler, 2002; Lampen, Murray, 2001; Lawrie et al., 2002), improvement of teaching 
strategies (Lavy, Bershadsky, 2002), benefits for students of using manipulatives 
(Jirotkova, Littler, 2002) or software (Kwon et al., 2001), problem solving (Lampen, 
Murray, 2001; Owens, 1996; Stylianou et al., 1999), or theories framing research and 
curriculum development (Gutierrez, 1996; Owens, 1999; Saads, Davis, 1997). 
The research reported in this paper is part of this agenda. Its central focus is to 
analyze students’ level of reasoning and their ability to conjecture and prove in the 
context of space geometry. As a first step, we have designed a test aimed to provide 
information about the kinds of outcomes produced by secondary school students 
when solving problems of proof or conjecture and proof. The result obtained after the 
administration of the test is a set of students’ responses reflecting different Van Hiele 
levels of reasoning and several types of empirical and deductive proofs. 

THE FRAMEWORK AND RELATED LITERATURE 
Three elements integrate the theoretical framework of this research: i) The concept 
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network of prism is the mathematical content base of the problems solved by 
students. ii) The Van Hiele levels of reasoning, as characterized in Gutierrez, Jaime 
(1998) and applying the paradigm of evaluation defined in Gutierrez, Jaime, Fortuny 
(1991), are used to identify students’ reasoning while solving the problems. iii) The 
categories of mathematical proofs defined in Marrades, Gutierrez (2000) are used to 
classify the types of proofs produced by students. 
i) The two problems we posed to students deal with prisms and some of their 
elements and properties (see below the statements of the problems). The main 
concepts and properties necessary to solve the problems are: 
* A prism is a polyhedron having two parallel congruent faces (bases) linked by 

parallelogram faces (side-faces). Prisms can be right prisms, and oblique prisms.
* In any prism, all the side-edges are parallel and congruent. In a right prism, all the 

side-edges are perpendicular to the bases (and to all the base-edges), and all the 
side-faces are rectangles. In an oblique prism, no side-edge is perpendicular to the 
bases, and at least a side-face is not a rectangle. 

* A diagonal is a segment joining two non-consecutive vertices of a polyhedron. 
Diagonals can be face diagonal and space diagonal.

* A n-gonal prism has n+2 faces, 2n vertices, 3n edges, and 2n(n-2) diagonals, n(n-1) 
of them being face diagonals, and n(n-3) of them being space diagonals. 

ii) There is extensive literature describing the characteristics of Van Hiele levels. 
Some refer to space geometry (Gray, 1999; Guillen, 1996; Gutierrez, 1992; Lawrie et 
al., 2000, 2002; Owens, 1999; Saads, Davis, 1997). The main characteristics of Van 
Hiele levels referred to the context of prisms and diagonals are stated below. We used 
these descriptors to analyze students’ answers and identify their levels of reasoning. 
Level 1: Students are able to draw some diagonals in a given prism, but they are not 

exhaustive nor can induce a general relationship. Their explanations or 
justifications are just a description of what they have drawn. 

Level 2: Students induce a formula for the number of diagonals of a n-gonal prism 
after drawing and counting the diagonals in a few prisms, and they justify it just by 
summarizing the data they have considered. Students can use the formula they have 
obtained to calculate the number of diagonals or sides of a given prism. 

 Students prove that a given conjecture is true (false) by drawing a figure as an 
example (counter-example) to show that the conjecture is (is not) verified. Their 
justifications are just a description of what they have drawn. In particular, students 
use a square (cube) as a counter-example for a rectangle (right prism). 

 Some times students prove that a given conjecture is true by providing a deductive 
argument that really proves the converse of the given conjecture. 

Level 3: Students induce a formula for the number of diagonals of a n-gonal prism in 
the same way as those reasoning in level 2, but in this level proofs are abstract 
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deductive informal arguments (some times based on a specific example drawn) 
connecting data with the conjecture. 

Level 4: Students induce a formula for the number of diagonals of a n-gonal prism by 
first drawing some specific examples, and then writing a proof. In this level proofs 
are abstract deductive formal arguments connecting data with the conjecture. 

iii) Balacheff (1988) and Harel, Sowder (1998) proposed two well known 
categorizations of mathematical proofs. More recently, Marrades, Gutierrez (2000) 
proposed a new set of categories which integrates and expands those defined by the 
above mentioned authors. We have used the latest categorization to analyze and 
classify the proof produced by the students participating in our research. 
Schematically, the categories defined in Marrades, Gutierrez (2000) are: 
In empirical proofs examples are the argument of conviction. There are three classes, 
depending on the way students select the examples: Naive empiricism (the conjecture 
is proved by showing that it is true in one or more, randomly selected, examples), 
crucial experiment (the conjecture is proved by showing that it is true in a carefully 
selected, example), and generic example (the proof is based on a specific example, 
seen as a representative of its class, and it includes explicit abstract justifications. 
Each class of empirical proofs has several types corresponding to ways students use
the selected examples in their proofs: Perceptual proofs are naive proofs involving 
only visual or tactile perception of examples. Inductive proofs are naive proofs 
including mathematical elements or relationships. Example-based proofs consist only 
in showing the existence of an example. Constructive proofs consist in describing the 
way of getting the example. Analytical proofs consist in using properties empirically 
observed in the example. Intellectual proofs are based on empirical observation of the 
example, but the they mainly use abstract properties of the example. 
Deductive proofs consist on the use of abstract deductive arguments. There are two 
classes of deductive proofs, depending on whether students use an example or not: In 
a thought experiment a specific example is used to help organize the proof. A formal 
proof is based on mental operations built without the help of examples. 
Each class of deductive proofs has two types depending on the styles of proof made: 
Transformative proofs are based on mental operations producing a transformation of 
the initial problem into another one. Structural proofs consist in sequences of logical 
deductions derived from the data and axioms, definitions or accepted theorems. 

THE EXPERIMENT 
To get information on secondary school students’ levels of reasoning and proof 
abilities, we designed an experiment based on the development and administration of 
a paper and pencil test to evaluate students’ behavior and content knowledge in 
several areas of space geometry. The test has seven items, six of them having the 
structure of super-item (Collis et al., 1986). The contents of the seven items are: 
Identification, description, and characterization of solids and their parts (faces, edges, 
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vertices, diagonals); Classification of solids; Cross-sections of solids; Nets of solids; 
Conjecturing and proving properties of solids. 
In this paper we analyze the answers of 299 students from several mixed ability class 
groups in grades 7 to 11 (aged 12 to 17 years) from three secondary schools in a rural 
city of New South Wales (Australia). The test was administered to the whole class 
groups. The Table below summarizes the number of students in each grade and 
school.

 7th grade 8th grade 9th grade 10th grade 11th grade
High School N 12 26 18 35 27 
High School O 49 12 23 -- 33 
High School P 28 -- 16 -- 20 

Total 89 38 57 35 80 

We have presented elsewhere the results of the items dealing with nets and cross-
sections of solids (Lawrie et al., 2000, 2002). In this paper we analyze the answers to 
two items asking students to obtain and prove conjectures about prisms: 

Item A: a) Remember that a diagonal of a polyhedron is any segment 
joining two non - neighbouring vertices of the polyhedron. In the 
figure you can see a polyhedron (a pentagonal prism). Segments 
AB, CD, and EF are some of its diagonals. Draw three more 
diagonals of this polyhedron. 

b) How many diagonals has a n-gonal prism (that is, a prism whose base 
is a n-sided polygon)? Explain, justify or prove your answer. 

c) How many diagonals starting from the marked vertex has a rectangular 
prism? Explain your answer. 

d) How many diagonals starting from the marked vertex has a pentagonal 
prism? Explain your answer. 

e) How many diagonals has a n-gonal prism (that is, a prism whose base 
is a n-sided polygon)? Explain, justify or prove your answer. 

f) What prism has exactly 48 diagonals? Explain, justify or prove your answer. 

Item B: Tell if the following statement is true or false, and give an explanation, 
justification, or proof for your answer: 

 “If all the side-edges of a prism are perpendicular to the base, then all its side-faces 
are rectangles”. 

 The statement is          Explain, justify, or prove your answer. 
Question A-a is a reminder of the definition of diagonal of a polyhedron. Question A-
b states the main problem without any help. To solve it, students need to reason at 

A

B

C

D

E

F
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levels 2, 3 or 4, producing different answers depending of their level of reasoning. 
For those students not able to solve the problem in A-b, questions A-c and A-d are a 
prompt showing the main clue to elaborate the conjecture and its proof. To answer 
these questions, only reasoning of levels 1 or 2 is required. Afterwards, question A-e 
states again the main problem, to check if students are able to solve it after working 
on the clues. Now, students need to reason at levels 2 or 3. As the answer to question 
A-e has been guided by questions A-c and A-d, reasoning of level 4 is not required to 
answer it. Finally, question A-f asks students to apply the result they have obtained in 
A-b or A-e. Only reasoning of level 2 is required to answer this question. 
Item A was presented to students split into two pages, the first one containing A-a 
and A-b, and the second one containing A-c to A-f. In this way, students do not see 
the clues while they are trying to solve the problem for the first time (A-b). 
Item B asks to prove a given property of right prisms. This is a harder problem, since 
no prompt is provided to students. Possible answers range from just a drawing 
followed by a comment to a formal proof, so reasoning of levels 2, 3 or 4 is required. 

ANALYSIS OF RESULTS 
The objective of the research is to identify kinds of answers produced by secondary 
school students, so we do not include here quantitative information about frequencies 
of answers. Below we present examples of the main kinds of answers produced by 
the secondary school students in the sample. 

Answers to question A-b 
V.H.
level

Type of 
proof

An n-gonal prism has 2n diagonals. E.g. a triangular prism has 6 
diagonals (2x3 sides). A rectangular prism has 8 diagonals (2x4 
sides). [included pictures of a triangular and a rectangular prism 
and the diagonals of their side-faces] 

2 Inductive
Naive

empiricism

[after counting, with some mistakes, the number of diagonals in 
several polygons: 4 sides-2 diagonals, 5-5, 6-8, 7-14, 8-19] From
4-2 and 5-5 obtains d = 3n-10. An n-sided polygon has 3n-10 
diagonals. An n-sided prism has two bases (i.e. 2(3n-10)) and 2n 
diagonals in the rectangles. Then d = 8n - 20 for any prism.

3 Intellectual
Generic
example

The first answer exhibits a level 2 reasoning, since a general formula has been 
induced from some examples. The proof are the examples used to induce the formula, 
so it is a naive empiricism proof. Furthermore, the student has used the examples 
drawn to get mathematical information, so the proof is of the inductive type. 
The second answer begins with typical level 2 reasoning (inducing the number of 
diagonals of a polygon) but then it shifts to level 3 reasoning, a generic abstract 
deductive process to obtain the formula for a n-gonal prism. This proof is built on 
properties observed in the examples and then stated abstractly, since they refer to a n-
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gonal prism, so it is an intellectual generic example proof. 

Answers to questions A-c, d, e 
V.H.
level

Type of 
proof

The student drew the diagonals in the given prisms and wrote the 
numbers of diagonals. No answer to question A-e. 

1 - - - - 

[In A-c (A-d), the student drew 4 (6) diagonals] There are 8 (10) 
vertices; 4 are excluded (the dot and the three others directly 
beside). A-e: d = n - 4 [without any comment or proof] 

2 Perceptual 
Naive

empiricism
[In A-c (A-d), the student drew 4 (6) diagonals and wrote the 
numbers] A-e: Each rectangular side has 2 diagonals, so 2n. 
There are 2 n-gonal bases, so 2n. The space diagonals are n(n-1). 
Then, d = n(n+3). This doesn’t work for prisms where n²4.

3 Analytical 
Generic
example

Many students produced answers like the first one. They are able to draw and count 
the diagonals from a vertex, but they are not able to induce a general formula, so they 
are reasoning at level 1. In this case there is not a mathematical proof. 
Students reasoning at level 2 usually solve correctly questions A-c and A-d, as they 
understand which vertices can/cannot be linked by a diagonal, like second answer. 
Then they try to induce a general formula to answer question A-e, although they do 
not provide a reasonable proof of such formula. This behavior is typical of level 2 
reasoning, proofs being usually of types naive empiricism or crucial experiment. 
The third answer is clearly different from the second one because in question A-e the 
student wrote a proof of the formula. It is an abstract generic description of the 
process of getting the formula, based on generalizing the two specific examples of A-
c and A-d to a n-gonal prism, so it is an analytical generic example proof. 
Students answered question A-f in a meaningful way only when they had obtained a 
general formula for the number of diagonals of a prism in previous questions. In such 
case, students used their formula to calculate the number of sides of the given prism, 
therefore exhibiting a level 2 style of reasoning. 
Only a few students in grades 7 to 9 produced meaningful answers to item B, but 
there were more answers from students in grade 10 and especially grade 11. 

Answers to item B 
V.H.
level

Type of 
proof

False: They [the side-faces] could be squares. 2 Counter-ex
True: [the student drew a rectangular right prism] Side edges are 
perpendicular to the base. Side faces = rectangles. 

2 Ex.-based
Crucial

experiment
True: The solid could be a rectangular or square prism or a cube. 
Since squares can be rectangles and the angles in squares and 
rectangles are 90¡, all side-edges are perpendicular to the base. 

2 Converse 
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False: When you look at more complex solids this statement 

becomes untrue, like with a dome as structure . The side-
edges start being perpendicular but then change. This doesn’t 

really agree with the statement. Or a solid as  where they 
are perpendicular but the top of the rectangle is cut off to give 
jaggard edges. This also doesn’t agree with the statement.

3 Counter-
example

True: Prove: That side edges perpendicular make rectangular 
side faces. Data: Above [the statement of the item].
Proof: The side edges make right angles with the base edges. The 
side edges are parallel (all at 90¡ to the base). 

 The side faces are parallelograms with 90¡ angles. 
 The side faces are rectangles.

4 Structural
Formal 
proof

Many students, like the first case, considered that squares are not rectangles, so they 
provided a cube or a right prism with square side-faces as a counter-example for the 
conjecture. Other students produced more elaborated answers, like the fourth case, 
drawing prism-like solids and analyzing them to show that the conjecture was false. 
These proofs cannot be classified into the categories defined in Marrades, Gutierrez 
(2000) because these categories refer only to proofs of the truth of a conjecture. 
Some students made the usual mistake of proving the converse implication, like the 
one in the third case, showing that they still have not acquired the level 3 reasoning. 
Finally, very few students produced formal proofs, like the last case, exhibiting level 
4 reasoning. This proof is an example of structural formal proofs, since it does not 
include any drawing as auxiliary guide to build the deductive argument. 

CONCLUSION
An overview of the answers obtained shows a quite complete range of answers in 
Van Hiele levels 1 to 3. On the contrary, we have only obtained a few answers in 
level 4, as could be expected from a sample of secondary school students. Research 
based on university students should be carried out to complete the catalog of answers 
for the higher levels of reasoning and deductive classes of proofs. 
After completing the catalog of answers, the next step in this research program is to 
design and experiment teaching units focusing on the learning of geometric solids 
and the improvement of students’ reasoning levels and proving abilities. 
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In this paper we analyze instructional materials supported by a Dynamic Geometry 
software, which were produced by teachers during an in-service training program. 
We discuss illustrative examples, as well as the outcomes of the critical discussions 
that took place during the presentations of these materials by the teachers. In order 
to analyze these materials, our conception of geometry involved a full spectrum of 
activities, from concrete exploration and experimentation, through conjecturing, 
problem solving, and on to formal proof. We also took into consideration results from 
research on the didactical potential of Dynamic Geometry (DG). It is argued that 
these programs can help us address fundamental difficulties in developing 
geometrical thought, as they can provide new representations of geometrical objects. 
Our aims are to evaluate how close from fulfilling this potential seem to be the 
instructional materials produced by the teachers themselves and to discuss the main 
factors influencing teachers’ conceptions while developing of these materials. 

INTRODUCTION
As discussed in Belfort & Guimarães (2002), the need to create opportunities for 
regular in-service training courses for secondary (that is: year groups from 11 to 17) 
Mathematics teachers in our geographical area led us to create a two-year in-service 
training course. We adopt as basic principles that solid mathematical formation and 
pedagogical and didactical knowledge are essential in training teachers, but they 
cannot be considered enough. The course should also include activities especially 
planned to allow teachers to reflect upon their classroom practices and to establish 
connections between their own learning experiences in Mathematics and their 
practice as secondary teachers.
During the first semester of the in-service training course, secondary Mathematics 
teachers revisit basic contents in geometry and functions, in disciplines supported by 
computer laboratory lessons. As reported in Guimarães et al. (2002), there are 
indications that most of teachers working in Brazilian secondary schools have “a less 
than adequate grounding in geometry” (p. 213), and it was decided that they should 
have several other opportunities to revisit geometry in the following semesters of the 
course.
They acquire some experience in using computers as tools for teaching Mathematics 
by attending the 'Computers for Mathematics Teaching' (CMT) discipline, which was 
designed to provide a counterpoint to the previous disciplines, when computers were 
extensively used as a tool by the instructors. With their newly acquired experience as 
learners to rely upon, they are asked in CMT to discuss, as well as exercise, the 
possibilities of the computer as a teaching tool for Mathematics. As part of the 
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assessment process of the discipline, the teachers are asked to write an essay, in 
which they must present their own computational instructional materials to other 
secondary mathematics teachers and justify its use for classroom work. They were 
encouraged to use Dynamic Geometry (D.G.) software (Barbastefano et al., 2000; 
Jackiw, 1996; Laborde & Bellemain, 1994) as a way to help overcome their own 
difficulties in geometry. 
A first report of the outcomes of a research project design to evaluate the CMT 
discipline was presented in Belfort et al. (2001). In this article, under the light of a 
broader theoretical perspective, we deepen that previous analysis and add new data 
from other editions of the discipline.  

THEORETICAL BACKGROUND 
There are several factors to consider if we endeavor to understand teacher’s practices. 
Cooney (1988) described teaching as “an interactive process”, in which conscious 
decision making is needed not only during the planning of the lessons but also “on 
the stage”. Models to explain the role of the teacher usually consider the interaction 
between teacher’s knowledge and beliefs as the basis for their decisions (Fennema et 
al., 1989). The complexity of the influence of textbooks and other written materials 
on teachers’ practices is also to be considered (Belfort da Silva Moren, 2000).
There are also several indicators from research that a solid subject content knowledge 
may be essential for a successful teacher (see Grossman et al., 1989; Ball, 1988, 
1991; Leinhardt et al., 1991). In particular, Ma (1999) discusses the importance of the 
“profound understanding of fundamental mathematics (PUFM)” demonstrated by 
some elementary teachers. According to her, the work of these teachers displays the 
following characteristics: connectedness, multiple perspectives, awareness of the 
basic ideas, and longitudinal coherence (p. 122). 
If we attempt to transpose these research ideas to the situation of the study of 
Mathematics at secondary level, it seems that, if the teaching of secondary 
Mathematics is to display a similar set of characteristics as the ones observed by Ma 
(1999), the teacher would need to be able to ponder the connections of his/her 
mathematical knowledge with the mathematical contents of secondary school. In the 
case of Geometry, it seems that the secondary school curriculum oscillates between 
more figure exploration/less formal geometry teaching and less figures/more proof 
elaboration, reflecting the dialectic process between exploratory work with figures 
and proof elaboration, which can be seen in the historical evolution of geometry. 
Concrete exploration, experimentation, conjecturing, problem solving and proof 
formulation seems to be central points of the set of skills we want the student to 
acquire in his/her knowledge construction process (Guimarães et al, 2002). But this 
set of skills, which seems so natural to the scientifically trained, does not come so 
naturally to the students. The concrete object does not have the same signification 
and is not explored in the same way by the mathematician and by the student: the 
way the concrete object is used strongly depends on the previous knowledge of who 
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is using it. Even more important is that teaching based on the exploration of the 
concrete object makes the none evident assumption that the interaction with the 
concrete will effectively produce the construction of the desired knowledge 
(Balacheff, 1999).
Again in the case of geometry, the concrete object is often a diagram, and to 
understand the differences in the exploration of this, researchers consider two 
different objects (Parzysz, 1988; Arsac, 1989; Laborde et Capponi, 1994; Balacheff, 
1999): one that is concrete, called the drawing, and the other formal, corresponding 
to the class of drawings representing the same set of specifications (called the figure).
From this point of view, a dynamic geometry software can have a specific 
contribution: it can provide controlled representations of geometrical objects, which, 
in some ways, concretize the formal figure.  
We take as one of our assumptions that these software can provide new ways to learn 
geometry, and by way of consequence, new ways to teach geometry. Their use in in-
service programs for teachers of Mathematics provides us also with the opportunity 
to discuss with them how to integrate mathematical software in their teaching toolkit. 

ANALYSIS OF TEACHERS’ INSTRUCTIONAL MATERIALS 
In Belfort et al. (2001), we analyzed the instructional materials developed by the 
teachers during the first edition of CMT discipline from three different perspectives: 

usage of the computational software as a didactical resource (Software); 
subject matter knowledge and consistent mathematical reasoning (Subject); and 
appropriateness of the didactical proposal, considering the targeted year group 
(Instruction).

We discussed that, although we were expecting a balance among these three factors, 
this was achieved only in roughly one third of the essays. The majority was mostly 
oriented towards a single perspective, ignoring the others. During the following 
editions of the CMT discipline, the same tendencies were observed. We provide here 
some examples of the developed materials and briefly describe the outcomes of the 
discussions that took place during the presentations of these essays to the group. 
Instructional Materials Oriented Towards the “Software” Perspective: 
The instructional materials in this group (about 10% of the essays) reflect their 
authors' focus of interest as being the process of mastering the use of the software. 
The material developed by Marcos1, using The Geometer's Sketchpad to draw 
geometric loci is an extreme example. Figure 1 illustrates two of his sketches.
The typical initial reaction by the teachers to this sort of presentation is admiring the 
sophisticated use of the package resources that characterizes these materials. 
Nevertheless, once the question “what have you learned from this activity?” is posed 

                                          
1 Here and in the following cases we use fictitious names. 

Vol 2–33
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to them, this reaction begins to change. In their final evaluation of the typical material 
in this group, teachers realize that they allow virtually no room for students' 
exploration and that mathematical concepts are neither explained nor justified. 
Teachers become aware that students are, at best, treated as spectators. For instance: 
in the case of Marcos’ materials, all they have to do is to 'click the mouse' over the 
animation button, and watch curves being 'magically' traced, the proprieties of which 
they cannot investigate. It was also observed by the teachers the lack of definition of 
the year group(s) for which the material was intended. 
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Figure 1: Marcos’ instructional material in DG environment. 
Instructional Materials Oriented Towards the “Subject” Perspective: 
The instructional materials in this group (about 10% of the essays) usually reflect 
their authors' focus of interest as being the opportunity to revisit subject contents that 
can be represented in a simple way using DG. The work developed by José 
exemplifies this set of materials. As shown in figure 2, he used only the basic tools 
available in a Dynamic Geometry Software (Tabulæ) to study the points of 
intersection of the cevians of a triangle. The written essay was mathematically 
correct, presenting definitions, theorems and well-organized proofs. 

Figure 2: José’s instructional materials in a DG environment 
During the presentation of the works in this group, it soon became clear to the other 
teachers that very little is left for students' interactions, as these material are usually 
ready visualizations of mathematical results, not to be discussed nor justified in the 
laboratory environment. In the case of José’s materials, for instance, the students’ job 
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is reduced to move the vertices of the triangles to verify that the intersection points 
remain coincident. Since José could not state clearly the objectives of the proposed 
tasks, the group of teachers searched for didactical alternatives, and some interesting 
suggestions were presented. Teachers in the group were also unanimous in 
considering that students should be encouraged to construct the geometrical objects 
themselves, the more so given that only the simplest resources made available by the 
DG software were applied on the development of this type of sketches.
Instructional Materials Oriented Towards the “Instruction” Perspective: 
Almost half of the materials developed by the teachers can be classed in this group. 
They reflect their authors’ focus of interest in creating computer assisted learning 
activities for their pupils. Designed to provide experiences in area measurement, the 
instructional material presented by Mariana is a typical example. We present a model 
of the interaction proposed in her first sketch in figure 3: pupils are asked how many 
square area units are needed to fill the rectangle. The following sketches repeat the 
experience, but the rectangles get larger. Mariana explained to her colleagues that she 
expected the students to make the effort to (inductively) conclude the formula for the 
area of the rectangle, as a means of avoiding the repetitive job. 

Figure 3: Mariana’s instructional material in DG environment 
Teachers’ spontaneous remarks, such as “this is so boring!”, “ after that, kids will 
hate computers!” and “this remind me of my textbook!”, show they acknowledged not 
only that the typical interaction proposed by these materials underestimates DG’s 
potential but also the strong influence in these materials of textbook’s approaches to 
Mathematics contents. That the proposed learning experiences in this group usually 
display a fragmented vision of the topic and a clear hurry in getting the “formula” is 
probably a consequence of this very influence. 
Although these materials are often designed exploring the resources of DG software 
at an intermediate level, it was argued by the colleagues that they fail to encourage a 
meaningful mathematical development, lacking connections and multiple 
perspectives. For instance, in the particular case of Mariana’s proposed activities, it 
was observed by one of the teachers that all rectangles in the sketches have integer 
side measures, even though the year group targeted by her is the very one studying 
operations with fractions in our schools. It is to be noted that this doesn’t seem 
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relevant to many Brazilian textbook authors either, as a quick check on their own 
examples for area measurement indicates. 
Well Balanced Instructional Materials: 
An instructional material was considered as “well balanced” whenever all three 
perspectives were integrated by its author. The materials presented by Helena are a 
good example. Directed at students in their final years of secondary school, they 
exploit the characterization of the ellipse as the locus of the points for which the sum 
of the distances to two given fixed points of the plane is constant. By means of a 
sequence of activities supported by written guidelines, students are led to the 
construction of this locus using the so-called director circle. Figure 4 illustrates the 
initial stage of the third sketch given to the students and also its final stage, in which 
new constructions were added by the pupils. We have also observed that teachers 
who produce well balanced materials do not usually rely solely on the content of a 
single textbook, but seem to seek support for their work by researching a more 
comprehensive bibliography.  

Figure 4: Helena’s instructional material in DG environment 
Teachers who produced well balanced materials typically chose to simulate a 
laboratory lesson when presenting their work to their colleagues. During the 
presentation of these materials, it was observed that teachers, working in pairs, got 
really involved in solving the proposed tasks. The discussion engaged in by the group 
after these presentations acknowledged that examples in this category typically 
provide the students with a sequence of computer activities aiming at developing a 
well defined mathematical concept. Teachers in the group also commented that these 
materials display an evident concern with proper definitions and justifications for the 
geometric constructions and results. 

FINAL REMARKS 
The substantial differences in the outcomes of teachers’ work suggest that they have 
different views on Mathematics teaching and learning processes. Some of 
instructional materials seemed to reinforce the role of the teacher as the knowledge 
keeper (and teller), while others provided experiences that seemed to be designed to 
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keep students “busy”, with no clear (minimum) objectives to be achieved. Yet other 
materials seemed to reflect a problem identified by several researchers (Ball, 1988, 
Ma, 1999, etc.): the lack of deep, broad and thorough subject matter knowledge on 
the part of the teachers resulted in fragmented materials. In them, formulas were 
overestimated and there was strong reliance on the simplified approaches found in 
some of the poorest textbooks available in the Brazilian market. On the other hand, 
there were teachers who produced well balanced materials, in which mathematical 
concepts were treated as connected parts of a body of knowledge. 
Our results also suggest that to provide their students with worthwhile learning 
experiences using computers is an idea that may have a strong appeal for the 
Mathematics teachers. We contend that this motivation can be explored to help them 
to overcome content knowledge difficulties, and to develop a critical awareness of 
the materials available for classroom work.  
Although we are well aware that developing instructional materials is not at all a 
simple task (see Belfort da Silva Moren, 2000), we feel it is worthwhile to give 
teachers the opportunity to make an attempt at it. The debate that took place in 
classroom exploring the didactical characteristics of the materials made these 
teachers more conscious of some critical educational issues related to Mathematics 
teaching and learning processes, and, in most cases, made them willing to make the 
effort to overcome their perceived difficulties. It is to be expected that these 
experiences will reflect positively on their future work. 
Finally, we strongly believe that a Dynamic Geometry software is a powerful tool for 
teaching and learning Mathematics. Nevertheless, as it happens with any other tool, it 
is the way it is used that determines the final outcomes. If we expect teachers to fully 
understand the potential of these packages, we’d better start to provide them with rich 
learning experiences supported by DG environments. 
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